
Université Catholique de Louvain
Faculty of applied sciences

Department of computer sciences
Master thesis 2007

Algebraic soft-decoding

of

Reed-Solomon codes

Arnaud Dagnelies

Promoter:
Prof. P. Delsarte

Thanks to my parents,
my promoter,

all my roommates
and especially
Amine, Ciara,

Camille, Netah,
Yo-Sun and Yo-Yin

1

Foreword

This text is divided in two parts. The first one, the prerequisites, introduces
all the necessary concepts of coding theory. If the reader is familiar with
the basics of information and coding theory, he might skip this part and go
directly to the second part, which is the core of this thesis. This second part
studies an algorithm which improves the decoding of Reed-Solomon codes.
For readers familiar with coding theory, the second part is gently introduced
also making it directly accessible.

Error-correcting codes are used to add redundancy to data to make it
fault tolerant (up to a certain degree). Roughly said, the typical way to do it
is to encode sequences of bits to longer sequences of bits by adding structured
redundancy in it. That way, even if some bits are corrupted, but not too
many, the structured redundancy enables us to retrieve the original data.
One of the most efficient and widely used type of error-correcting codes are
precisely Reed-Solomon codes. Both because of their good properties and
their efficient decoding techniques. The algorithm presented here runs in
polynomial time and provides more powerful decoding than conventional
decoding algorithms. A more precise and exhaustive description can be
found in the introduction of the second part of this text.

We wish you an enjoyable reading.

2

Contents

I Prerequisites 6

1 Introduction 7
1.1 Overview . 7
1.2 Introductory example . 8

2 Basics of communication 9
2.1 Communication system . 9
2.2 In more details... 11
2.3 Channel encoder . 13
2.4 Channels and demodulators 14

2.4.1 Binary Gaussian channel ...and friends 14
2.4.2 Qary symmetric channel 16
2.4.3 Binary erasure channel 17

2.5 Channel decoder . 17

3 Coding theory introduction 19
3.1 What are codes? . 19
3.2 Nearest neighbor decoding . 20
3.3 Space and spheres . 22

4 Mathematics fundamentals 27
4.1 Groups . 27
4.2 Rings . 30
4.3 Fields . 32

5 Linear codes 34
5.1 Definition . 34
5.2 Hard decoding using the syndrome 38

3

6 More on fields 42
6.1 Field properties . 42
6.2 The extended Euclidean algorithm 44

7 Reed-Solomon codes 48
7.1 Not so classical decoding . 50
7.2 The key equation . 54
7.3 Conclusion . 57

II Soft decoding 58

8 Introduction 59
8.1 What do we achieve here? . 59
8.2 History and results . 59
8.3 General outline . 60

9 The Sudan algorithm 61
9.1 Introduction . 61
9.2 Decoding problem reformulation 61
9.3 Weighted degree . 64
9.4 Overview . 64
9.5 Constraints for Q . 65
9.6 Monomial enumeration . 66
9.7 Roots vs degree of Q . 67
9.8 Example . 68
9.9 Performances . 69

10 Zeros, roots and constraints 71
10.1 Zeros of higher multiplicity 71
10.2 Expressing the constraints . 73

11 The core theorem 77
11.1 Multiplicity Matrix . 77
11.2 Algorithm and example . 80

12 Multiplicity assignment 84
12.1 The reliability matrix . 84
12.2 Setting the problem . 85
12.3 Greedy MAA . 87
12.4 Proportional MAA . 88

4

12.5 Asymptotic hard-decoding performances 89
12.6 Asymptotic soft-decoding performances 90

13 Kötter’s interpolation 92
13.1 Monomial ordering . 92
13.2 Kernels of constraints . 94
13.3 The algorithm . 94
13.4 Performances . 99
13.5 Pseudo-code . 99

14 Factorization 101
14.1 Roth-Ruckenstein factorization 101
14.2 Pseudo-code . 104

15 Program notes 106
15.1 Algebra . 107

15.1.1 Finite fields . 107
15.2 Polynomials . 108
15.3 Communication System . 108

15.3.1 Interfaces . 108
15.3.2 Channels . 109
15.3.3 Encoders and decoders 110

16 Conclusion 111

III Appendix 116

A Source code 117
A.1 Algebra . 117
A.2 Communication system interfaces 131
A.3 Reed-Solomon encoders/decoders 133
A.4 Channels . 148

5

Part I

Prerequisites

6

Chapter 1

Introduction

1.1 Overview

Reliable communication has always been important. Even in our every day
life. Imagine your mail has a few kilobytes of data altered on its way, or
that an extremely tiny scratch makes your DVD unreadable, or that the
message typed on your mobile phone was sent with wrong letters or to a
wrong recipient... All these are examples of error detection or correction.
In our era of digital communication, reliable transmission of information
is a wide ranging concern. It is the aim of this first part to establish a
model of communication, to explain precisely how it can be modeled and
how exactly the information can be made more reliable by means of error-
correcting codes. To go straight to the subject, a little introductory example
is presented thereafter. Then, a communication system model is taken in all
its generality in the second chapter. The role of the different components
are inspected and refined at each step, by using basic assumptions on the
kind of communication models. Most notably, bloc encoders, memoryless
channels are reviewed with an emphasis on the distinction between hard and
soft-information. Then the basics of coding theory is presented in chapter 3,
also in all its generality, along with some bounds on code sizes and decoding
paradigms. Before linear codes are reviewed (these are the codes having the
greatest use in practice), fundamental mathematics are reviewed in chapter
4. This includes a basic coverage of groups, rings and fields. This enables us
to present linear codes in chapter 5 as vector subspaces over finite fields pre-
viously presented. This chapter also covers the generator and parity check
matrices as well as a brief introduction to syndrome decoding. Then, in
chapter 6, finite fields at looked more closely at, explaining basic properties,

7

reviewing polynomials with coefficient in finite fields, how to construct ex-
tension fields and lastly the extended Euclidean algorithm which will show
its use in the next chapter. It the last chapter 7, Reed-Solomon codes, the
subject of the second part, are introduced. It explains what Reed-Solomon
codes are, how to decode them using classical algorithms and presents the
key equation.

1.2 Introductory example

So, what is it all about?

Let us begin with a simple illustrative example. Imagine a satellite in space
which communicates with some station on earth. That is, it receives data
or sends data messages across space. Let us take a basic scenario where
the station on earth sends a binary message to it, for example 00110. This
message is then transformed by a modulator to produce waves that the
satellite receives and demodulates to recover the original message. The
catch is that interferences in space can provoke misinterpretations by the
demodulation which in turns causes erroneous bits in the received message.
Still with the example that 00110 was sent, the erroneous message 10110
could be received instead. In the best case scenario, the satellite would
ask for a retransmission and in the worst case, it would execute a wrong
command with possible potentially disastrous consequences.

Since a retransmission is fairly time consuming, one could wonder if
there is no better way to transmit information more reliably. And this is
exactly what coding theory is about. By adding redundancy in messages, it
is possible to detect or even recover the original message if the distortion is
not too important. For example, every bit of the message could be repeated
three times so that the message 00110 would be encoded in 000 000 111 111
000. That way, if 010 000 111 111 000 is received the correct message could
be easily decoded by selecting the bit with greatest occurrence from each
triplet. The whole question of coding theory is about how to add redun-
dancy in messages to achieve the best compromises between the quantity
of redundancy added and the error-correction ability it provides. Knowing
the channel, the demodulator can often provide the information about the
probabilities of whether each bit is 0 or 1. This opens the way to more pow-
erful soft decoding techniques taking advantage of this information. One of
this techniques is the subject of this thesis.

8

Chapter 2

Basics of communication

”The fundamental problem of communication is that of repro-
ducing at one point either exactly or approximately a message
selected at another point.”

Claude E. Shannon - A Mathematical Theory of
Communication

2.1 Communication system

Communication is the activity of transmitting information. This transmis-
sion can either be made between two places, like a phone call. Or between
two points in time, for example the writing of this thesis so that it can be
read later on. We shall restrict ourselves to the study of digital communi-
cation. That is, the transmission of messages that are sequences of symbols
taken from a set called alphabet.

Definition 1 An alphabet A is a (finite or infinite) set of symbols. By
writing Aq, we denote a finite alphabet having exactly q distinct symbols.

Example
A message on an alphabet {0, 1} could be ”01001110” as in the introductory
example. Or the sentence ”HELLO WORLD” with the alphabet of usual
English alphabet augmented by the space character.

9

Digital communication has become predominant in today’s world. It
ranges from internet, storage disks, satellite communication to digital tele-
vision and numerous others... Moreover, any analog system can be trans-
formed into digital data by various sampling and signal transformation meth-
ods. Typical examples include encoding music in an mp3, numerical cam-
eras, voice recognition and many others.

A digital communication system, in all its generality, can be represented
as follows.

Source −→ Transmitter −→ Physical Channel −→ Receiver −→ Destination
↑

+ Noise

• The information source outputs the data to be communicated. It pro-
duces messages to be transmitted to the receiving destination. When
it is a digital source, these messages are sequences of symbols taken
from a finite alphabet.

• The transmitter takes the source data as input and produces an asso-
ciated signal suited for the channel. The aims of the transmitter can
be multiple:

– that a maximum of information is transmitted per unit of time.
This is directly connected to data compression techniques taking
advantage of the statistical structure of the data.

– to ensure a reliable transmission across the noisy channel. In
other words, to make it fault tolerant to errors introduced by the
channel. This is typically done by adding structured redundancy
in the message.

– to provide message confidentiality. This typically involves encryp-
tion which hides or scrambles the message so that unintended
listeners cannot discern the real information content from the
message.

• The physical channel is the medium used to transmit the signal from
the source to the destination. Examples of channels conveying in-
formation is conveyed over space like telephone lines, fiber-optic lines,
microwave radio channels... Information can also be conveyed between
two distinct times like for example by writing data on a computer disk
or a DVD and retrieving it later.

10

As the signal propagates through the channel, or on its storage place,
it may be corrupted. For example, the telephone lines suffer from
parasitic currents, waves are subject to interference issues, a DVD can
be scratched... But these perturbations are regrouped under the term
of noise. The more noise, the more the signal is altered and the more it
is difficult to retrieve the information originally sent. Of course, there
are many other reasons for errors like timing jitter, attenuation due
to propagation, carrier offset... But all these perturbations lie beyond
the scope of this thesis.

• The receiver ordinarily performs the inverse operation done by the
transmitter. It reconstructs the original message from the received
signal.

• The destination is the system or person for whom the message is in-
tended.

2.2 In more details...

As was said in the previous section, the transmitter can have several roles
together. To compress data, to secure data, to make it more reliable and
lastly to transmit it as signals suited for the physical channel. Compressing
data is also called source coding, it consists of mapping sequences of symbols
in the original data stream to shorter ones. This is done based on the
statistical distribution of the original data: the most frequent sequences are
mapped to shorter ones while rare sequences are mapped to longer ones. By
doing this, the resulting sequences are on average shorter, i.e. sequences with
less symbols. On the opposite, in order to make the sequence of symbols
robust to errors, redundancy is added to it. This is called channel encoding
and consists of mapping shorter sequences to longer ones so that if a few
symbols are corrupted the original data can nevertheless be found back.

What if we want the transmitter to do both? This seems contradictory
since one reduces the number of sent symbols while the other increases
it. However, it is not really. The source coding reduces the redundancy
of unstructured data which would not provide protection if symbols were
corrupted. For example, despite knowing that a file contains on average
99% of zeros, you cannot know which bits were corrupted when sending the
file as it is.

On the opposite, channel coding adds structured data to improve protec-
tion against such errors during the transmission. By taking the compressed

11

file and reapeating three times each bit, you can decode correctly up to one
error per three bits introduced.

One could wonder if a technique performing both in a single step could
be more efficient than doing it it sequentially. It turns out that performing
source and channel coding sequentially tends to be optimal when the treated
sequence length tends to infinity. This is known as the source-channel coding
separation theorem and is one of the results of Shannon’s ground breaking
work [4]. For finite sequence length, such joint encoding techniques are still
a subject of research.

Until now, we spoke only about symbols and about mapping sequences
of symbols to other sequences of symbols with better properties. However,
the physical channel does not, technically speaking, transmit symbols but
signals (waves, voltage, ...). We however assume a one-to-one mapping be-
tween symbols and signals which is done by a modulator to map a symbol to
the corresponding signal and a demodulator mapping back a received signal
to a received symbol, or informations about the likelihood of each potential
symbol. Notice that by separating the source and channel coding, an en-
cryption module can also be conveniently inserted between both. Putting
all together, the obtained refined communication model is illustrated below.

Source −→ Source encoder
↓

Encryption
↓

Channel encoder −→ Modulator
↓

Physical Channel
↓

Channel decoder ←− Demodulator
↓

Decryption
↓

Destination ←− Source decoder

All three modules: compression, encryption, channel coding are of course
optional and not necessarily included in a communication system. The part
of interest for us is channel encoding and decoding. As a side note, but
important, one consequence of source coding or encryption is that any of
them tends to produce equiprobable sequences of symbols. This argument

12

will support an important assumption for the input of the channel encoder
later on. Moreover, even if these modules are not present and nothing is
known about the source’s output, this is still the best assumption that can
be made. The main part of interest for us is the channel encoder and decoder
and it can now be isolated from the remaining system.

Lastly, the modulator and demodulator constitute the glue between the
transmitter, the physical channel and the receiver. Usually, the channel
is considered as the modulator, the physical channel and the demodulator
together, providing an abstract model having as input and output symbols.
However, the received signals, altered by noise, may not match any of the
sent ones. So either it is mapped to other symbols in a bigger alphabet or
some threshold decision must be used to decide which symbol of the original
alphabet it should be. This is seen in more details in the section about
channels.

2.3 Channel encoder

The role of the encoder is to add structured redundancy to sequences of
symbols. There are different ways of doing this but the biggest class of
encoders are by far block encoders. They work by cutting the data stream in
blocks (of symbols) of fixed size and encoding these blocks one after another.
Such a block, a finite sequence of symbols, is also known as a word.

Definition 2 A word w = (w1, ..., wm) of length m over an alphabet A is
an ordered sequence of m symbols taken from A.

The data block is called the message word. By hypothesis, it has a fixed
length, say k. The encoder maps each such word to a longer one, called
codeword, also of fixed size, say n. A reasonable assumption is that both
words, the message and the encoded codeword, are defined over the same
alphabet Aq. The encoder is thus a mapping from words of length k to
words of length n where n > k. Words can be seen as points in a space
over the alphabet. In this light, the encoder is a mapping of points in Akq
to points in Anq . More specifically, the encoder is an injective function:

Enc : Akq → C ⊂ Anq .

If the alphabet has q elements, then qk message words are mapped onto
qk from qn possible words. The set of all codewords is thus only a subset of
Anq and this set forms the code C ⊂ Anq which is the image of the encoder

13

function. On a closer look, it turns out that what is of interest is not the
mapping, but the code C itself. This is the subject of the next chapter.

2.4 Channels and demodulators

Channels are the medium used to transmit signals corresponding to symbols,
where the transmission of each symbol is assumed to be of equal duration.
When noise corrupts a transmitted symbols, it tends to introduce errors
having some pattern. One of the most frequent pattern is burst errors:
several consecutive symbols are usually corrupted at once. Other patterns
include cyclic errors, ”echoing” errors and so on. However, we shall restrict
ourselves only to channel models introducing errors randomly, without any
pattern. These are called memoryless channels.

Definition 3 In a memoryless channel, the nth received symbol yn depends
solely on the nth sent symbol xn.

Thus, in such a channel, each symbol is transmitted, and maybe cor-
rupted, independently from the others. The model of any memoryless chan-
nel can be characterized by:

• An input alphabet Ain: the set of symbols that can be sent on the
channel.

• An output alphabet Aout: the set of symbols that can be received at
the other end of the channel.

• Transition probabilities p(Y = y|X = x) for all x ∈ Ain, y ∈ Aout,
denoting the probability of receiving the symbol y when x was sent.

The reason transition probabilities can be expressed this way lies in
the fact that the channel is memoryless. For channels with memory, more
complex stochastic models would be needed and the transition probabilities
would rely on several variables.

Concerning the input and output alphabets, they are not necessarily the
same. The output alphabet can even be infinite despite Ain is finite. This
is illustrated in the channel presented just now.

2.4.1 Binary Gaussian channel ...and friends

The Binary Gaussian channel is one of the most used in practice. In this
section we present a slight variation thereof. Let its input alphabet be {0, 1}

14

and the output be continuous in R, hence an infinite output alphabet. The
principle is simple: when the signal is transit in the channel, Gaussian noise
N (0, σ) is added to it. Let X be the random variable standing for the sent
bit and Y the one for the received bit. The probabilities of obtaining a
value y when the bit 0 or 1 is sent are distributed according to two normal
distributions:

p(Y = y|X = 0) ∼ N (0, σ)

p(Y = y|X = 1) ∼ N (1, σ)

These are illustrated below for σ = 1/2.

Knowing the obtained value y, the likelihood of the sent bit can be
computed using Bayes’ rule:

p(X = 0|Y = y) =
p(X = 0 ∩ Y = y)

p(Y = y)

=
p(Y = y|X = 0)p(X = 0)

p(Y = y|X = 0)p(X = 0) + p(Y = y|X = 1)p(X = 1)

Example
Let σ = 1/2 as in the illustrated normals. If y = 0.6 is received, then the
likelihood probabilities of the sent bit are:

p(X = 0|Y = y) =
0.39 ∗ 0.5

0.39 ∗ 0.5 + 0.58 ∗ 0.5
= 0.4

p(X = 1|Y = y) =
0.58 ∗ 0.5

0.39 ∗ 0.5 + 0.58 ∗ 0.5
= 0.6

This means that there are 60% chances the sent bit was a 1 and 40%
chances it was a 0.

15

The knowledge of the likelihood of the sent bit is called soft-information,
in the example 40% and 60%. This is in opposition to hard-information
which is the knowledge of only the most likely symbol. For the previous
example, just 1. The latter alternative is simpler for the demodulator since
a simple threshold rule tells if the output should be a zero or a one. If the
input of the channel is assumed to be equiprobable, then the output is 0 if
y < 0.5 else it is 1. However, by doing this, some information is inherently
lost. On the opposite, no information is lost in soft-information consisting
of the likelihood of each symbol.

2.4.2 Qary symmetric channel

This channel works with any input alphabet Aq and the output alphabet
is the same. The adjective symmetric refers to the transition probabilities.
Given a crossover probability perr, the transition probabilities are as follows.

• The probability that the sent symbol α is unchanged upon reception
is:

∀α ∈ Aq : p(Y = α|X = α) = p(X = α|Y = α) = 1− perr

• The probability that the sent symbol α became a different symbol β
upon reception is:

∀α, β ∈ Aq, α 6= β : p(Y = β|X = α) = p(X = α|Y = β) =
perr
q − 1

The following example illustrates the binary symmetric channel.

-

-

Q
Q
Q
Q
Q
Q
Q
Q
QQs�

�
�
�
�
�
�
�
��3

0 0

1 1

perr

1− perr

1− perr

perr

Let us show the relationship between the binary symmetric channel and
the Gaussian one we presented before. By including a demodulator which
can only provide hard-information to the previous Gaussian channel, the
binary symmetric channel is obtained with a crossover probability of perr =
p(0.5 > N (0, σ)).

16

2.4.3 Binary erasure channel

Another common variant of binary channels is the use of an additional era-
sure symbol denoted by ε. In this channel, either the symbol is correct or it
is simply ”erased” and there is no way to know what it was. No information
at all is available to deduce the sent symbol in the latter case. The graphical
representation is as follows.

-

-��
��

��
��

��1

PPPPPPPPPPq

0 0

1 1

perr

perr

1− perr

1− perr

ε

For example, such channels model appropriately hard drives where there
could be bad sectors, or optical disks where scratches make some bytes
unreadable and so on.

2.5 Channel decoder

Decoders can basically be divided into two classes. The ones using hard-
information, the knowledge of the most likely symbols, are said to perform
hard-decoding. Their counterpart, taking advantage of soft-information, the
likelihood of each symbol, are said to perform soft-decoding. These latter de-
coders are typically both more powerful and more computation intensive. To
show that soft-decoding can lead to better error correction, let us illustrate
it with the following example.

Example
Let us take as example a binary Gaussian channel where the noise has vari-
ance σ2 = 1. Suppose either 000 or 111 was sent. These two codewords
form the code C = {000, 111}.

Let y = (0.4, 1.2, 0.3) be the received values. The hard information
would be: ŷ = 010 and the a hard-decoder based on it would deduce that
the most likely sent codeword is x̂ = 000. On the other hand, by computing
the likelihood of each sent symbol, we have:

17

p(X = 0|Y = 0.4) = 0.52
p(X = 1|Y = 0.4) = 0.48

p(X = 0|Y = 1.2) = 0.33
p(X = 1|Y = 1.2) = 0.67

p(X = 0|Y = 0.3) = 0.55
p(X = 1|Y = 0.3) = 0.45

Since each symbol is independent (because the channel is memoryless),
we have:

p(X = 000|Y = (0.4, 1.2, 0.3)) = γp(X = 0|Y = 0.4)p(X = 0|Y = 1.2)p(X = 0|Y = 0.3)
= γ0.09

p(X = 111|Y = (0.4, 1.2, 0.3)) = γp(X = 1|Y = 0.4)p(X = 1|Y = 1.2)p(X = 1|Y = 0.3)
= γ0.14

Where γ = (0.09 + 0.14)−1. Therefore, a decoder able to use this soft-
information would conclude that the most likely sent codeword is x̂ = 111!
Indeed, 111 is more likely than 000, but both decoders made the best choice
based on the information they had when decoding. It is because hard-
information inherently looses part of the information.

18

Chapter 3

Coding theory introduction

In this chapter, we show how the set of codewords forming the code can itself
reveal the potential decoding ability of the code. How many errors can be
corrected is directly dependent on how the codewords are chosen from An,
the set of all words of length n. On the same time, coding theory basics are
reviewed, explaining main parameters of codes, practical bounds on these
and some insights on simple codes.

3.1 What are codes?

As seen in the previous chapter, a code is the set of all the encoded words,
the codewords, that an encoder can produce.

Definition 4 A q-ary code C of length n is a set of codewords in An, where
A is an alphabet of q symbols. The size of the code, noted |C|, is the number
of codewords in the code.

Example
A ternary code of length 5 is the following set:

AAABB
BABAB
CCCCC
ABCBA

The ternary alphabet used is A = {A,B,C} and the code size is
|C| = 4 (it contains 4 codewords).

19

Codewords can be seen as vectors in the space An where the ith symbol
is the ith coordinate. To compare words, the space An can be equipped
with a convenient metric called the Hamming distance.

Definition 5 The Hamming distance between two words x,y ∈ An is the
number of coordinates in which symbols differ.

dH(x,y) = |{i|xi 6= yi}|

Example
dH(01110, 11000) = 3
dH(BLUEBERRY,RASPBERRY) = 4

The Hamming distance is a metric since it satisfies the triangle inequality.

dH(x,y) ≤ dH(x,w) + dH(w,y)

We invite the reader to quickly check it.

3.2 Nearest neighbor decoding

Nearest neighbor decoding is the process of decoding a received word by
selecting the codeword at least Hamming distance from it. It is based on
the following theorem.

Theorem
Let the channel be a memoryless symmetric one having a crossover proba-
bility perr <

q−1
q and assume all codewords have equal probabilities to be

sent. Under these conditions, the most likely sent codeword is the codeword
at least Hamming distance from the received word.

Proof

Let y be the received word and assume that it differs in e places
from a codeword c. Then the probability that c was sent is:

p(X = c|Y = y) =
p(c)

p(Y = y)

∏
p(Yi = yi|Xi = ci).

The probability p(y) appears in each whereas p(c) is constant due to the
equiprobability of the sent codeword hypothesis. Therefore, the above

20

expression is directly proportional to:∏
p(Yi = yi|Xi = ci) ≤ (1− perr)n−e

(
perr
q − 1

)e
.

Since 1− perr > 1/q and perr/(q − 1) < 1/q by hypothesis, this function
is strictly decreasing with e. Therefore, the probability that c is the
sent codeword increases as e decreases so that the word being at least
Hamming distance is the most likely one. �

It should be kept in mind that nearest neighbor decoding is maximum
likelihood decoding under the implicit assumption that we are working with
a ”normal” symmetric channel. To stress how important this assumption is,
let us take a small example. Suppose the word AAXXXXB is received and
either AAXXXX or XXXXXB could be decoded. If the probability that
an A was an X before (transmission) is 1/4 and the probability that a B
was an X before is 1/32, then it is more likely that the two A’s are erroneous
than a single B. In other words, the codeword XXXXXB would be more
likely despite it is the one having the greater distance to AAXXXXB
compared to the other codeword.

Satisfying the symmetric channel hypothesis, as well as the probability
condition concerning it, are crucial for nearest neighbor decoding. But this
hypothesis is frequently met in practice. Either because the channel is indeed
a symmetric one or because no information about likelihood of symbols is
available to the decoder, like in hard-decoding, and thus assuming that any
kind of symbol error is equiprobable. This places the hard-decoding problem
in a new light. The aim of the hard decoder reduces to find the codeword
at nearest distance from the received word. More formally, the most likely
sent codeword x̂ is the codeword of least distance to y.

x̂ = argminx̂∈CdH(x̂,y)

£ Hard decoding thus forgets abouts probabilities and focuses solely on
finding the nearest codeword.

Intuitively, one can feel that it is interesting for the code to have a
maximum of distance between its codewords.

Definition 6 The smallest distance between any two distinct codewords of
a code C is called the minimal distance of a code and is noted d.

d = min
x,y∈C,x 6=y

dH(x,y)

21

Indeed, the minimal distance of a code is a fundamental parameter since the
error correcting ability of the code is directly related to its minimal distance.
For nearest neighbor decoding, in order for the code to provide unambiguous
decoding of the received codewords up to e errors, it is necessary and suficient
that the minimal distance be at least d = 2e+ 1. This follows directly from
the triangle inequality since no received word w can lie at distance less than
or equal to e to two codewords if they are all at a distance d = 2e+ 1.

Intuition also tells us that soft decoding performances are as well affected
by the minimal distance between codewords. However, quantifying it is a
difficult task involving channel outcome probability distributions.

3.3 Space and spheres

Back to the codes. We showed that the minimal distance of a code is a
crucial parameter, but what is also of interest is that it contains a maximum
number of codewords. We will see in this section how the construction of
good codes is equivalent to a sphere packing problem. We shall begin by
considering the set of words at a given distance from some word and forming
a Hamming sphere.

Definition 7 The Hamming sphere of radius τ around a word w is the set
of all the words which are at a Hamming distance ≤ τ from w.

Hτ (w) = {x ∈ An|dH(x,w) ≤ τ}

Example
Consider the alphabet {A,B,C} and the word AABB. The Hamming
sphere of radius 2 around this word contains :

• at distance 0: AABB

• at distance 1: BABB,CABB,ABBB,ACBB,AAAB,AACB,
AABA,AABC

• at distance 2: BBBB,BCBB,BAAB,BACB,BABA,BABC,
CBBB,CCBB,CAAB,CACB...

Let A be an alphabet of q symbols, the number of words in a sphere of
radius τ sums up to:

22

τ∑
i=0

(
τ
i

)
(q − 1)i

Hamming spheres show to be a useful concept, both by assisting under-
standing and to derive bounds on code parameters. For example, requesting
e errors to be unambiguously correctable is equivalent to request that the
Hamming spheres of radius e around any two distinct codewords do not in-
tersect. Indeed, if words were in two spheres, it would mean that they are
at a distance less than or equal to e from several codewords. This leads to
following definitions:

Definition 8 The packing radius is the greatest possible radius of spheres
around each codeword so that they do not intersect.

The covering radius is the smallest possible radius around codewords so that
any word is included in some sphere.

To get good codes, the points in space should be chosen to have the
greatest possible packing radius to maximize the minimal distance. And
on the same time, have the lowest possible covering radius to not ”waste
space”. Obviously, we always have that covering radius ≥ packing radius.
Using these, it is easy to obtain lower and upper bounds on the size of a
code depending of its minimal distance:

Theorem
HAMMING BOUND
Given an alphabet of size q and a space of n dimensions, the size of any code
with minimal distance 2e+ 1 is bounded from above by:

|C| ≤ qn∑e
i=0

(
n
i

)
(q − 1)i

.

Proof

This is simply the number of words in the space divided by the
number of words in a sphere. �

23

In a similar manner a lower bound on the number of codewords can be
obtained:

Theorem
GILBERT-VARSHAMOV
Given an alphabet of size q and a space of n dimensions, there exists a code
with minimal distance d whose size is bounded from below by:

|C| ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

.

Proof

Let C be a code of length n and minimal distance d containing a
maximum number of codewords. Since it contains a maximum number
of codewords, no additional word in space is at a distance d or more
from all other codewords. Otherwise, this word could be added to the
code. This implies that the spheres of radius d− 1 around the codewords
cover all the space. Thus, the number of codewords times the size of a
Hamming sphere of radius d − 1 must be greater than or equal to the
number of words in the whole space. By dividing both sides by the size
of a sphere, the theorem’s formula is obtained. �

Example
These bounds are however very far apart. Assume we want to find a binary
code of length 20 and able to correct unambiguously up to 3 errors. This
implies it must have a minimal distance of at leat d = 2e+1 = 7. This gives
us the following bounds on the size of the code:

|C| ≥ 220∑6
i=0

(
20
i

) ≥ 17

|C| ≤ 220∑3
i=0

(
20
i

) ≤ 776

24

And thus, we know that a code with these parameters and containing at
least 17 codewords exists, but it is impossible to find such a code containing
more than 776 codewords.

These are not the only bounds and we invite the interested reader to
other resources for further informations about them. They can be found in
any coding theory book such as [1] or on Wikipedia.

Achieving the Hamming bound happens when the packing radius is equal
to the covering radius (why?). Codes achieving this extraordinary property
are called perfect codes and are very scarce. These are repetition codes,
Hamming codes and Golay codes. However, their parameters do not neces-
sarily fit the application. Therefore, it is important to have good codes for
a wide range of parameters even if they are not perfect.

Example
This example shows a perfect code and illustrates the concept of spheres.
Consider words in the space {0, 1}3. This space can be illustrated as a cube
where each vertex represents a word as illustrated below.

• The Hamming sphere of radius 1 around 000 contains

{000, 001, 010, 100}

• The Hamming sphere of radius 1 around 111 contains

{111, 110, 101, 011}

It is not sufficient to have a code, efficient ways to decode it are nec-
essary. The naive approach to decoding would be to compare the received

25

word to every codeword by measuring it’s Hamming distance. Despite the
fact that this provides the best possible decoding it has unreasonable time
complexity. For example, if there is a codeword associated to any message
of 100 bits, then this makes already more than 1030 codewords and thus as
much comparisons. Hard-decoding paradigms can be subdivided into three
categories:

• Bounded distance decoding: this is the most frequent kind of decoding
algorithms. Given a code C and a decoding radius τ less than or equal
to the packing radius (usually equal). Bounded distance decoding
decodes a received word y ∈ An to x ∈ C if dH(x,y) ≤ τ . I.e. if
the received word lies in a sphere of radius τ around some codeword,
uniquely determined. In the case the received word is in none of the
spheres, a decoding failure is declared. This is why it is also referred
as τ -error decoding since it decodes correctly if at most τ errors were
introduced.

• List decoding: this problem can be seen as an extension of bounded
distance decoding. If we allow the decoding radius τ to be greater than
the packing radius, then codewords are no more uniquely determined.
List decoding therefore returns a list L = {x ∈ C|dH(x,y) ≤ τ} of all
codewords x ∈ C in the sphere of radius τ around the received word
y.

• Nearest codeword decoding: The decoded codeword x ∈ C is the
one with the minimum distance to the received word y ∈ An. I.e
x = minx∈C dH(x,y). If several codewords lie at the same distance,
there is a number of options possible: the list of these codewords is
returned, a codeword is chosen at random or a failure is declared. This
enables to correct any received words even if it lies beyond the packing
radius. However, this kind of decoding turns out to be computationally
difficult in general.

In order to provide efficient encoding and decoding, it is necessary to
provide the code with some underlying structure. And for the code to be
structured, the alphabet needs some mathematical structure itself. This
brings us to the next chapter explaining the basics of fundamental algebraic
structures.

26

Chapter 4

Mathematics fundamentals

This chapter is devoted to covering the basic concepts of groups, rings and
fields.

4.1 Groups

The most fundamental algebraic structure is a group. It satisfies the follow-
ing axioms.

Definition 9 A group (G, ∗) is a set G with a binary operation ∗ : G×G→
G satisfying the following 3 axioms:

• Associativity: For all a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c)

• Identity element: There is an element e ∈ G such that for all a ∈ G :
e ∗ a = a ∗ e = a

• Inverse element: For each a ∈ G, there is an element b ∈ G such that
a ∗ b = b ∗ a = e, where e is the identity element.

As is stated, a group is simply a set of elements having a neutral and
inverses, noted a−1 or −a depending on the situation. A group is said to be
commutative, or Abelian, if for a, b ∈ G we have ab = ba.

Example

• The set of even integers, noted 2Z is a commutative group under addi-
tion. On the opposite, the set of odd integers is not a group at all since
the sum of two odd integers does not lie in the set of odd integers.

27

• The set of invertible square matrices Rn×n forms a non-commutative
group under multiplication where the neutral element is the identity
matrix.

• Let S be an ordered set. Consider G: the set of bijections α : S → S.
That is, the elements of G are permutations of the ordered set S.
The set G is a group under composition. The inverse is simply the
permutation which maps S′ to its original state and the neutral is the
permutation which does not change anything.

It is straightforward to show that the cancellation laws hold in groups:

ab = ac⇒ b = c

Since it is sufficient to premultiply both sides by a−1 to obtain the equality.
Moreover the cancellation laws implies the following theorem.

Theorem
The map x→ ax : G→ G is a bijection.

Proof

To prove that the map is bijective, we will prove that it is both
injective and surjective. The cancellation law directly implies that it is
injective since ax1 = ax2 ⇒ x1 = x2. To show surjectivity, let us show
that for every b ∈ G there exists a value for x ∈ G so that ax = b, this is
simply x = a−1b. �

By taking a subset of elements satisfying the properties of a group, we
obtain a subgroup.

Definition 10 A subgroup (S, ∗) of (G, ∗) satisfies the following axioms:

• S ⊂ G and S 6= ∅

• if a, b ∈ S then a ∗ b ∈ S

• if a ∈ S then a−1 ∈ S

So that (S, ∗) is a group by itself with the same neutral element.

28

Example
The set of even integers 2Z is a subgroup of the integers Z.

By performing the operation (which can be the addition, the multiplica-
tion, ...) on a subgroup by an element of a group, we obtain a coset.

Definition 11 Let (H, ∗, e) be a subgroup of (G, ∗, e), both commutative. A
coset of H in G is a set of the form

aH = {ah|h ∈ H} = Ha

for some fixed a ∈ G.

Example
Let us take as group the integers Z under addition. Then 5Z is a subgroup
of it and 5Z + 1 is a coset.

Notice however that a coset is generally not a group. Indeed, it is easy to
see that if a /∈ H, then the coset aH has no neutral element and is therefore
not a group. Despite of this, cosets have some nice properties, illustrated in
the following theorem.

Theorem
Let H be a subgroup of G.

• If C is a coset of H and a ∈ C then C = aH

• Cosets form a partition on G

• When G is finite, all cosets have the same number of elements.

Proof

To show the first point, let a ∈ C = cH so that a = ch for some
h. By multiplying by h−1, we have c = ah−1. On one hand, any element
x ∈ C can be expressed as x = ch′ = ah−1h′ ∈ aH, thus C ⊂ aH. On the
other hand, any element y ∈ aH can be expressed as y = ah′′ = chh′′ ∈ C
and thus aH ⊂ C. Combining both, for any a ∈ C we have C = aH.

To show that the cosets form a partition on G, we must show that no
element can lie in two distinct cosets. If an element a lies in C and C ′,
then C = aH = C ′ and thus the sets are either equal or disjoint.

29

Lastly, that the cosets have the same number of elements as H follows
directly from the fact that x→ ax is a bijection on G. �

Example
Let us take 5Z, the multiples of 5, as subgroup of the integers Z. The cosets
are:

• {...,−5, 0, 5, 10, ...}

• {...,−4, 1, 6, 11, ...}

• {...,−3, 2, 7, 12, ...}

• {...,−2, 3, 8, 13, ...}

• {...,−1, 4, 9, 14, ...}

and the properties in the previous theorem are easily checked.

Despite most examples were applied to numbers, it should be kept in
mind that these numbers form a particular instance of the problem. In
particular, we will see in the next chapter on linear codes that these form a
group.

4.2 Rings

Definition 12 A ring (R,+, .) is a set R with two operations + and . such
that:

• (R,+) is a commutative group.

• . is associative and there exists an element noted 1 such that a.1 =
a = 1.a for all a ∈ R

• the distributive law holds: for all a, b, c ∈ R:
(a+ b).c = a.c+ b.c
a.(b+ c) = a.b+ a.c

The . is usually omitted so that a.b is abbreviated as ab.

30

Example
The integers Z form a ring whereas the set of even numbers 2Z is not a ring.
Checking this using the definition is left as a small exercise for the reader.

The most frequent example of rings is modular arithmetic, sometimes
also called ”clock arithmetic” and works as follows. Two integers a, b are
congruent modulo n if and only if a− b is a multiple of n.

a ≡ b (mod n) ⇔ n|(a− b)

The notation on the right means n divides a − b. Such a ring is noted
Z/nZ. The sets of congruent integers form n equivalence classes partitioning
Z.

Example
If we consider 12 o’clock as the hour 0, then the clock is equivalent to the
ring Z/12Z. Hours ”wrap around” after they reach 12. Here are a few
examples of computations in this ring:

• 17 + 23 ≡ 5 + 11 ≡ 16 ≡ 4

• 2 + 10 ≡ 2 + (−2) ≡ 0

• 10.10 ≡ −2(−2) ≡ 4

In other words, the result is equivalent to the remainder after dividing
by n.

The equivalence classes are:

• {...,−12, 0, 12, 24, , ...}

• {...,−11, 1, 13, 25, ...}

• {...,−10, 2, 14, 26, ...}

• ...and 9 more remaining sets

Let us lastly mention that polynomials with coefficients over a ring R
is noted R[x] and they also form a ring. Similarly, if polynomials have
several variables, then we note R[x1, x2, ..., xn] for the n variables and they
form rings as well. They do indeed form a group under addition and both
associativities and the neutral element 1 is satisfied.

31

However, they do not behave like in usual arithmetics, for example divi-
sion is not always possible and a polynomial could factor several ways. For
example, in (Z/6Z)[x], we have:

(x+ 2)(x+ 3) ≡ x2 + 5x ≡ x(x+ 5)

This motivates the need of a stronger algebraic structure.

4.3 Fields

Fields are mathematical structures behaving with the same rules as usual
arithmetic and close to our everyday intuition. A field is a set where opera-
tions like addition, subtraction, multiplication or division subject to the laws
of commutativity, distributivity, associativity and other ”usual” properties.

Definition 13 A field is a set F or F with two operations + and . such
that:

• (F,+) is a commutative group;

• (F ∗, .), where F ∗ = F \ {0}, is a commutative group;

• the distributive law holds.

Notice that a field is a ring, by definition, with the additional property
that every element has an inverse under multiplication. Some common ex-
amples of fields are R, C and Q. Indeed, every axiom is straightforward to
verify. However, the set of integers Z is not a field. Indeed, for (Z∗, .) to be a
group, any of its element should have an inverse under multiplication. This
is clearly not the case since no integers have an inverse in this set except −1
and 1.

Moreover, it should be noted that no flat assumptions are made about
operations like subtraction or division. These two can respectively be seen
as undoing the operation, i.e. a+ (−b) and a.b−1. Other familiar properties
are not assumed by default but easily proved.

A field is finite when it contains a finite number of elements, referred to
as the size of a field and Fq denotes a field of size q. This notation turns
out to be unambiguous because all fields of the same size are isomorphic
(identical via a renaming of elements). One of the most common finite fields
used in coding theory is the binary field encountered before. The addition
and multiplication tables of this field are illustrated below and correspond
to XOR and AND binary operations.

32

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

What about fields with more elements? Let us take as an example Z/5Z
which is the ring of the integers modulo 5. The field axioms can easily be
verified and we encourage the reader to do it. Thus the ring Z/5Z is also a
field whose addition and multiplication tables are illustrated below.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

This leads us to the question whether all such rings are also fields or not.
It can be observed that although the ring of integers modulo 5 is a field, all
such rings are not. For example, consider Z/6Z. It does not form a group
under multiplication since the elements 2, 3 and 4 have no multiplicative
inverses. For 2 and 4 it is straightforward to see that the product of it with
any number results in an even integer and they have therefore no inverse.
For 3, it is easy to see as well. By multiplying 3 by any odd integer is
equivalent to 3 and by an even integer results in 0.

Theorem
Z/nZ is a field if and only if n is prime.

However, they are by no means the only finite fields. They are the sim-
plest and sufficient to illustrate and understand how arithmetic in fields can
be done. The key thing to remember is that because of the field axioms, el-
ements can be unambiguously added, subtracted, multiplied and divided, in
opposition to previous algebraic structures covered. By taking the alphabet
as a field, say F, then Fn is a vector space (which is itself a group). This
vector space structure is practical and will help us defining linear codes in
the upcoming section. Finite fields will be investigated further thereafter.

33

Chapter 5

Linear codes

5.1 Definition

An important family of codes is linear codes. They do not only admit
simple representations but also have practical reasons by providing efficient
techniques of encoding and decoding.

Definition 14 Let F be a field. A linear code is a vector subspace of Fn:

∀a, b ∈ F, ∀x,y ∈ C : ax + by ∈ C

Example
Over F3, the following code is linear:
00000
11100
22200
00111
00222
11211
22011
11022
22122

Indeed, any linear combination of codewords is also a codeword.

Since a linear code is a vector subspace, a convenient way to express it
is by means of a basis of this subspace. This is the role of the generator
matrix.

34

Definition 15 A generator matrix G of a code C is a matrix whose rows
are vectors forming a basis of the code.

C = {m1g1∗ + ...+mkgk∗ | m1, ...,mk ∈ F}

The dimension k of a linear code is the number of its basis vectors and
the size of G is therefore k × n.

Example
A generator matrix for the previous example could be:

G =
(

11100
00111

)
The code has dimension 2 and every codeword from the code can be

obtained by a linear combination of these 2 rows.

Notice that G is not unique since there are many possible choices of a
basis for C. This generator matrix provides a convenient way to encode a
message m ∈ Fk: by multiplying it by G. The codeword x corresponding to
the message m is:

x = mG.

If the dimension of the code is k and the alphabet has q symbols, then qk

different messages can be encoded. Similarly, in a codeword of n symbols,
there are k symbols of information and n− k of redundancy. This is clearly
shown when the generator matrix is of the form G = [Ik×k|Ak×n−k]. In this
case, the first k symbols are the ones of the message m and n−k redundancy
symbols are added. This is called systematic encoding.

Example
Let the code over F5 be defined by:

G =

 100223344
010111000
001000222


The message m = 123 would be encoded in

x = mG = 123440122

35

The counterpart of the generator matrix is the parity matrix H.

Definition 16 A parity matrix H of a code C is a matrix whose rows are
vectors forming a basis of the nullspace of the code.

C = {c ∈ Fn|HcT = 0}

If the code has dimension k then the dimension of its nullspace is n− k and
the size of H is therefore (n− k)× n.

And here again H is not unique. Since the rows of H form a basis of the
nullspace of the code whose basis is the rows of G, we have:

GHT = HGT = 0

Notice that the roles of G and H are invertible. This leads to the notion
of dual code.

Definition 17 The dual of a code C defined by a generator matrix G is the
code C⊥ whose parity matrix is G. Similarly, if H is the parity matrix of C
then H is the generator matrix of C⊥.

Both matrices, G and H are easily obtained one from the other. By
putting the generator matrix in the form G = [Ik×k|Ak×n−k], a correspond-
ing parity check matrix is obtained by H = [−ATk×n−k|In−k×n−k] so that
multiplying both cancels.

If H has this form, the ith redundancy symbol will be a linear combina-
tion of the previous symbols, providing another way to encode messages.

Example
Using the code from the previous example, where the generator matrix has
the form G = [Ik×k|Ak×n−k], we have:

H = [−ATk×n−k|In−k×n−k] =



340100000
340010000
240001000
203000100
103000010
103000001


This enables us directly to compute the checks for the message m = 123 :

36

• x3 = −3x1 − 4x2 = 4

• x4 = −3x1 − 4x2 = 4

• x5 = −2x1 − 4x2 = 0

• ...

And we obtain the same codeword x = 123440122 (of course!) which
satisfies Hx = 0.

As a summary, we can write:

C = Im(G) = Ker(H)

Lastly, let us mention that the analogy with vector spaces on fields of
characteristic zero like the reals R stops here. For example, the scalar prod-
uct of a vector by itself can give zero. In other words, the vector is orthogonal
to itself. This can of course be extended to a set of vectors and lead to the
interesting case of selfdual codes. These codes have the interesting property
that their generator and parity check matrices are identical.

Example
The following code over the binary field is selfdual:

G =
(

1100
0011

)
= H

It is easy to verify that:

GHT = HGT = 0

To summarize it, a code is characterized by four important parameters:

• its alphabet

• its length n

• its dimension k

• its minimal distance d

37

And a code is sometimes noted with parameters in brackets and has the
form C[n, k, d].

Determining its minimal distance can be done several ways.

Definition 18 The Hamming weight of a word w ∈ An is the number of
non-null symbols the word contains.

wH(w) = dH(0,w)

And using this definition, we can show that the minimal distance of a linear
code is equal to the minimum weight of its nonzero codewords.

d = min
06=c∈C

wH(c)

If there were two codewords, say x and y so that dH(x,y) < d, then
x − y would also be in the code and have a Hamming weight less than d
which contradicts the hypothesis that we took d as the minimum weight.

For linear codes, one of the most fundamental bounds is the Singleton
Bound which combines the three main parameters k, n and d as follows.

d ≤ n− k + 1

It can be explained two ways. Given a code C[n, k, d], if all codewords
are projected on k−1 coordinates, then (since there are qk codewords) some
codewords must agree on all these k−1 coordinates. Thus, these codewords
then disagree on at most all other coordinates, i.e. the minimal distance is
at most n− (k − 1) proving the inequality.

The other way to show the bound makes use of H. For any set of
linearly dependent columns of H, there exists a codeword acting on these
whose weight is equal to the size of this set. Thus, the minimal weight
of codewords (=d) is equal to the minimum number of linearly dependent
columns. Since any set of n− k + 1 columns are necessarily dependent this
gives an upper bound on the minimum size of such a set and the above
inequality is obtained. Codes achieving this bound are called maximum
distance separable codes.

5.2 Hard decoding using the syndrome

Let x be the sent codeword and let y be the received word. Since we are
working in Fnq , the error vector can be expressed as e = y − x. The error

38

vector e is 0 in the locations where the channel did not introduce errors and
nonzero where errors were introduced. By definition, we have:

y = x + e.

Since a linear code is a vector subspace, it is also a subgroup of Fn.
By adding the error vector, y falls in the coset C + e and all cosets form a
partition over Fn. Taking this the other way round, we know that given a
received vector y, the error vector lies in the coset C + y. The most likely
error vector is then a word of least weight in this coset and is called coset
leader. If it is unique, nearest neighbor decoding is unambiguous, else, there
are several error vectors of same weight to choose from.

Example
Let the linear code C over F2 be defined by:

G =
(

1111100
0011111

)
If the received vector is 1110000 we know that the error is in the coset

formed by
{1110000, 0001100, 1101111, 0010011}

so that the most likely error is 0001100 and results in the decoded codeword
1111100. It is nevertheless possible that more errors were introduced so that
this choice would be the wrong one and another word of the coset be the
correct error word. However, taking the most likely error word, i.e. the
coset leader, remains the best choice that can be made.

A nice relationship with the Hamming spheres can be shown. The pack-
ing radius is the maximum value so that any coset leader having a weight
less than or equal to this radius is unique. The covering radius on the other
hand is equal to the maximum weight of any coset leader.

Example
In the previous example, there are 25 = 32 cosets:

• 7 cosets with unique coset leaders of weight 1.

• 19 cosets with unique coset leaders of weight 2.

• 1 coset with 2 coset leaders of weight 2, {1100000, 0000011}

39

• 5 cosets with several coset leaders of weight 3.

This means that unambiguous decoding can take place for any single
error as well as in 19 of 21 cases of double errors. There 2 double errors
where 2 most likely decoded codewords are possible. The packing radius is
1 and the covering radius is 3.

Here comes a general decoding technique. Let C + y be the coset to
which the received word belong. Since the sent codeword x is not known
a priori, the most likely error ê is the coset leader of C + y and we have
x̂ = y − ê. Thus a way to identify cosets is needed as well as a dictionary
mapping the cosets to one of their respective coset leader, having therefore
qn−k entries.

A way to identify cosets is the syndrome.

Definition 19 The syndrome s of a received word y is:

s = yHT .

Like in medical terminology where a syndrome means a pattern of symp-
toms helping to identify a disease, the syndrome in coding theory can be
used as a unique coset identifier. This fact is illustrated by the following
property:

s = yHT = xHT + eHT = eHT .

This formula shows that the syndrome is the same for any words of a same
coset. The codewords are ”filtered out” so that only the error word affects
the syndrome. This provides a straightforward way to make a syndrome
dictionary : a lookup table mapping syndromes to their corresponding coset
leader, i.e. the most likely error word.

Example
Let a linear code C over F5 be defined by the following parity check matrix:

H =
(

011111
101234

)
It can correct up to one error since any two columns are independent.

The code size would be 54 = 625 which is also the size of the cosets. There-
fore, a naive decoder would need 625 comparaisons. On the opposite, there
are 52 = 25 cosets that can already be associated with a coset leader:

40

s ⇒ Coset leader (one of)

00 ⇒ 000000
01 ⇒ 100000
02 ⇒ 200000
03 ⇒ 300000
04 ⇒ 400000
10 ⇒ 010000
11 ⇒ 001000

...
20 ⇒ 020000
21 ⇒ 000020

...
43 ⇒ 000400
44 ⇒ 004000

Now, suppose y = 123321 is received. Then

s = yHT = 10

And by looking up the table, the most likely codeword is directly obtained:

x̂ = y − 010000 = 113321

Such a syndrome dictionary is especially effective for high rate codes
since the syndrome dictionary is then small. For low rate codes, they are
however impractical due to their exponential storage needs.

41

Chapter 6

More on fields

A few chapters before, fields were briefly introduced. It is now time to cover
them more in depth. The aims of this section are multiple. First, to explain
basic proprieties of fields to become familiar with them, then to review
polynomial arithmetic over fields and lastly how to construct extension fields
of a given field.

6.1 Field properties

Let us take an element a 6= 0 ∈ F, where F is finite. By taking the series
a+ a, a+ a+ a, ... there is a point where it will come back to zero and wrap
around. If it was not, we would have that two different sums of a’s would
be equal since the field is finite. Thus the difference of them, also a sum of
a’s, would be zero leading to the same conclusion. Since the element can be
put in evidence, it boils down to knowing how many times 1, the neutral
under multiplication, can be added to itself before wrapping to zero since
the same applies to any element of F, forming cyclic subgroups of F.

Definition 20 The characteristic of a finite field Fq is the smallest integer
p such that

1 + 1 + ...+ 1︸ ︷︷ ︸
p times

= 0

The characteristic of a finite field is a prime number. Otherwise there would
be divisors of zero, i.e. some a 6= 0, b 6= 0 ∈ Fq so that ab = 0. By
multiplying by a−1 we have that b = 0 which contradicts our hypothesis.

42

Theorem
The size of a finite field is a power of a prime.

Proof

Suppose p is the characteristic of the field Fq with q > p. Take a
maximal set of elements {β1, β2, ..., βm} in Fq which are linearly inde-
pendent over Fp. That is, no two two sums of β’s can be equal. Then
the field contains, by closure, any linear combination of them.

α1β1 + α2β2 + ...+ αmβm ∈ Fq

And no others. Fq is a vector space of dimension m over Fp and has thus
q = pm elements. �

Of course, multiplication must be defined on this vector space in order
to provide the structure of a field. It turns out that all fields of same size
are isomorphic. That fields of same size are isomorphic means that one can
be obtained from another simply by renaming the elements. This enables
us to write Fq without ambiguity. Before we show how to construct fields
whose sizes are powers of a prime, a little introduction about polynomials
over fields is necessary. In opposition to polynomials over rings, polynomials
over fields have a unique factorization.

Definition 21 A polynomial p(x) in F[x] is called irreducible over the field
F if it is non-constant and cannot be represented as the product of two non-
constant polynomials from F[x].

Example
The polynomial x2 + 1 is irreducible over F3 but not over F2 where we have
x2 + 1 = (x+ 1)2.

The concept of modular arithmetic can be generalized to polynomials
over fields. Then F[x]/p(x) where p(x) ∈ F[x] becomes a set equivalence
classes of polynomials.

Theorem
The equivalence classes Fq[x]/r(x) form a field of size qdeg(r(x)) if and only
if r(x) ∈ Fq[x] is an irreducible polynomial.

43

The proof is similar to the one of APPENDIX A.1.

Definition 22 The order of a non-zero element a ∈ Fq is the smallest
integer m > 0 so that am = 1.

For every finite field Fq there exists an element of order q − 1 which is
called a primitive element. Thus, a finite field is composed of zero and all
q − 1 powers of this primitive element. This in turn means that F∗q forms a
cyclic group under multiplication whose generator is the primitive element.

Example
Let us take the irreducible polynomial r(x) = x3 + x + 1 over F2. Said
in another way, we have x3 = x + 1. Then we have, along with different
representations:

0 ⇔ 000 ⇔ 0
1 ⇔ 100 ⇔ 1
α ⇔ 010 ⇔ 2
α2 ⇔ 001 ⇔ 4
α3 = α+ 1 ⇔ 110 ⇔ 3
α4 = α2 + α ⇔ 011 ⇔ 6
α5 = α2 + α+ 1 ⇔ 111 ⇔ 7
α6 = α2 + 1 ⇔ 101 ⇔ 5
... (α7 = 1)

This set forms F23 and α is a primitive element.

The irreducible polynomial in the example above is special since the
primitive element is a root of it. Such a polynomial is called a primitive
polynomial.

Since F∗q is a cyclic group of order q−1, we have the interesting property
that βq = β for all β ∈ F ∗q . Therefore, every β ∈ Fq is a root of xq − x,
giving rise to the following factorization:

xq − x =
∏
β∈Fq

(x− β)

6.2 The extended Euclidean algorithm

We present an important algorithm which will be of later use in decoding
specific codes. This algorithm is very general and not limited to finite fields.
It computes the smallest common divisor of a pair of integers or a pair of

44

polynomials in one variable. For simplicity, we explain it here by applying
it on a pair of integers.

The algorithm works by decomposing every number in smaller and smaller
subparts by means of divisions with quotient and remainder. Suppose we
want to compute the greatest common divisor of, say, r0 and r1, with r1 < r0.
This is denoted by gcd(r0, r1). We will proceed by scrambling these two
numbers into smaller and smaller pieces until we obtain a divisor of both.
Here is how to proceed:

r0 = q1r1 + r2 with r2 < r1

r1 = q2r2 + r3 with r2 < r1

...
rm−1 = qmrm + 0 with rm+1 = 0

Or, shortly, we perform:

ri−1 = qiri + ri+1 with ri+1 < ri, 1 ≤ i ≤ m

until rm+1 = 0. That the algorithm is guaranteed to stop is straightforward
since the remainders ri are strictly decreasing at each iteration. To show
that the last non-zero remainder rm is the greatest common divisor of r0

and r1, we must proceed by induction. Since ri−1 can be expressed by a
linear combination of ri and ri+1, we have, by induction, that r0 and r1 can
both be expressed by a linear combination of rm and rm+1 also. And, since
the latter one is null, both r0 and r1 can be expressed as multiples of rm
solely.

Example
Let us compute gcd(654, 123) over the integers. We have:

654 = 5.123 + 39123 = 3.39 + 639 = 6.6 + 36 = 2.3 + 0

And thus gcd(654, 123) = 3 where 654 = 214.3 and 123 = 41.3. During
the process above, notice that the upper divisors and remainders can always
be replaced by a sum of ”smaller ones”. For example, 654 = 5.(3.39+6)+39,
then replace 39 by smaller ones and so on until at some time, everything
boils down to a multiple 3.

45

The extended Euclidean algorithm provides an additional side computa-
tion to find the ring elements u and v satisfying Bézout’s identity:

gcd(a, b) = ua+ vb

Over the integers, either u or v is obviously negative. It works hand in
hand with the basic Euclidean algorithm. Notice that the remainders, as
usual with ri+1 < ri, can be expressed as follows:

ri+1 = ri−1 − qiri
And thus, rm can be expressed, by induction, as a sum of multiples of

r0 and r1. A practical way to keep track of the values u and v is to compute
them iteratively at each step of the basic Euclidean algorithm so that:

ri = uir0 + vir1

Thus, at each step, ui and vi must be updated as follows:

ui+1 = ui−1 − q1ui vi+1 = vi−1 − q1vi,

with the initial values u0 = 1, u1 = 0, v0 = 0, v1 = 1.

Example
Let us compute gcd(654, 123) over the integers along with the values of ui
and vi at each step.

i ri qi ui vi
0 654 / 1 0
1 123 5 0 1
2 39 3 1 −5
3 6 6 −3 16
4 3 2 19 −101

And the relation ri = uir0 + vir1 can be verfied at each step. Another way
to make apparent the computation of the ui and vi is the following:

39 = 654− 5.123
6 = 123− 3.39

= 3(654− 5.123)
= −3.654 + 16.123

3 = 39− 6.6
= (654− 5.123)− 6(−3.654 + 16.123)
= 19.654− 101.123

46

Lastly, note that despite the examples were taken with integers, the
algorithm is much more general. It can be applied over various algebraic
structures and in particular to polynomials over fields. This will be used for
a decoding technique in the next chapter.

47

Chapter 7

Reed-Solomon codes

In 1960, I.S. Reed and G. Solomon introduced a family of error-
correcting codes that are doubly blessed. The codes and their
generalizations are useful in practice, and the mathematics that
lies behind them is interesting.

J. Hall - lecture notes

Reed-Solomon codes, abbreviated RS codes, are designed by oversam-
pling a polynomial constructed from the data. The message to send is
mapped to a polynomial and the codeword is defined by evaluating it at
several points.

Definition 23 Generalized Reed-Solomon code
Let α = (α1, ..., αn) be the locations where the Generalized Reed-Solomon
code is evaluated, with αi 6= αj for all i 6= j. Let λ = (λ1, ..., λn) be the
non-zero normalizing coefficients. Then, the GRS(n,k,α,λ) code is defined as
the set of codewords:

{(λ1f(α1), λ2f(α2), ..., λnf(αn))|f(x) ∈ Fq[x] with deg(f(x)) < k}

A classic Reed-Solomon code is the same without the normalizing coef-
ficients which constitute the ”generalization”. The RS code is obtained by
evaluating polynomials of degree less than k at n different locations αi. The
normalizing coefficients of a GRS code have a less important role since they
simply rescale values at each location by a given factor λi. Such a GRS
code can also be represented by a generator matrix of the type:

48

G =


1 1 ... 1

λ1α1 λ2α2 ... λnαn
λ1α

2
1 λ2α

2
2 ... λnα

2
n

...
...

...
λ1α

k−1
1 λ2α

k−1
2 ... λnα

k−1
n


However, it is sometimes more convenient to think in terms of polynomi-

als. Let m = (m0, ...,mk−1) ∈ Fkq be the message to send. Consider now the
bijection to f(x) = m0 + m1x + ... + mk−1x

k−1. This polynomial is called
the encoding polynomial. The codeword is then constructed by evaluating
this polynomial at the predefined positions α = (α1, ..., αn). The codeword
is c = (λ1f(α1), λ2f(α2), ..., λnf(αn)).

Example
Consider the field F11 and a RS code Cn,k where k = 3 and n = 5 evaluated
over α = (1, 4, 5, 6, 10). with λ = 1. Let the sent message be f = (3, 0, 1)
so that the encoding is f(x) = 3 + x2. Then the resulting codeword is
x = (4, 8, 6, 6, 4). Indeed:
x1 = f(2) = 3 + 1 = 4
x2 = f(4) = 3 + 16 = 8
...

The encoding polynomial passes through the n points (αi, λif(αi)) illus-
trated below:

-

6

α

f(x)

s

s
s s

s

Let us make some observations about the graph. First, any permutation
of the evaluation positions αi will produce the same graph. This reflects the

49

fact that for given points, the same function encodes it, independent of how
the evaluation positions are ordered.

From the algebraic structure of RS codes we can derive many of its
properties. For instance, that a Reed-Solomon code meets the Singleton
bound so that we have:

d = n− k + 1

Indeed, since every polynomial is of degree at most k − 1, it has at most
k−1 roots. In other words, it is zero in at most k−1 positions. This in turn
implies that at least n − (k − 1) of the positions where it is evaluated are
non-zero values. This means that any non-zero codeword has a weight of at
least n − k + 1. Since a GRS code is a linear code, the minimum distance
is equal to the non-zero codeword of least weight.

Another property we can derive is that the dual of a GRS(n,k,α,λ) code
is a GRS(n,n−k,α,ρ) code itself, for some ρ. To show this, let us consider the
product of G and H:

GHT =


1 1 ... 1

λ1α1 λ2α2 ... λnαn
λ1α

2
1 λ2α

2
2 ... λnα

2
n

...
...

...
λ1α

k−1
1 λ2α

k−1
2 ... λnα

k−1
n




1 1 ... 1

ρ1α1 ρ2α2 ... ρnαn
ρ1α

2
1 ρ2α

2
2 ... ρnα

2
n

...
...

...
ρ1α

n−k−1
1 ρ2α

n−k−1
2 ... ρnα

n−k−1
n


T

= 0

This forms a system of n− 1 equations of the form:∑
i

λiρiα
j
i = 0 with 0 ≤ j ≤ n− 2

where the ρi are the unknowns. Since they are n of them, there exists a non
zero solution, proving that the dual of a GRS code is another GRS code
(evaluated at the same positions).

7.1 Not so classical decoding

The bounded distance decoding algorithm presented here is not the classical
decoding explained in most introductory books. It is an alternative, first
presented by Gao [3] offering an elegant, yet simple, solution to the decoding
problem.

50

Theorem
GAO DECODING ALGORITHM
Input: the received word y = (y1, ..., yn) ∈ Fnq
Output: the encoding polynomial f(z) or ”Decoding failure”

• Step 1: Set p0(z) =
∏n
i=1(z − αi) and find the (unique) polynomial

p1(z) of degree n− 1 such that p1(αi) = yi for i = 1, ..., n.

• Step 2: Apply the extended euclidean algorithm on p0 and p1 and stop
when the remainder pm(z) has degree less than n+k

2 .

• Step 3: Perform the division pm(z) = f(z)vm(z) + r(z). If r(z) = 0
and deg(f(z)) < k then output f(z) as the encoding polynomial, else
declare a ”Decoding failure”.

Proof

In the following proof, we assume that e errors were introduced.

e = |{i|f(αi) 6= yi}|

Let
w(z) =

∏
i

(z − αi) , i|f(αi) = yi

w̄(z) =
∏
i

(z − αi) , i|f(αi) 6= yi

Let us moreover define the polynomial ∆(z) of degree at most e− 1 such
that:

∆(αi) =
yi − f(αi)
w̄(αi)

, i|f(αi) 6= yi

Since there are e constraints and deg(∆(z)) ≤ e − 1, this polynomial
exists and is unique. In order to make the proof lighter and the reading
easier, the variable will be hidden by default so that f is directly written
instead of f(z) and so on. Using these polynomials, both p0 and p1 can
be expressed as follows:

p0 =
n∏
i=1

(z − αi) = w̄w

51

p1 = w̄∆ + f

Indeed, we have p1(αi) = yi for every i and is of degree less than n
as required. As a first step, we shall prove that applying the extended
Euclidean algorithm to (w,∆) gives the same sequence of quotients, for
m iterations, as if it was applied to (p0, p1). Let r0 = w and r1 = ∆,
then by applying the algorithm we obtain the successive remainders and
quotients satisfying:

ri−1 = riqi + ri+1 ,with 1 ≤ i ≤ m,deg(ri+1) < deg(ri)

where rm+1 = 0. Let us now show that the same m successive quotients
are obtained by applying the algorithm to p0 and p1. To do this, let us
directly define pi as:

pi = uip0 + vip1

= uiw̄w + viw̄∆ + f

= w̄ri + vif

The relationship to verify to show that the sequence of quotients is the
same for both is:

pi−1 = qipi + pi+1

w̄ri−1 + vi−1f = w̄qiri + qivif + w̄ri+1 + vi+1f

In the latter relationship, we see that the quotients indeed satisfy the
equality. However, it must also be shown that deg(pi+1) < deg(pi) in
order to be correct. For 0 ≤ i ≤ m, the degree of pi is:

deg(pi) = deg(w̄ri + vif).

The degree of each vi is less than or equal to the degree of r0, itself equal
to e by definition. Thus, we have deg(vif) ≤ e + (k − 1) whereas the
degree of w̄ is n− e. Under the assumption that e < n−k+1

2 we obtain:

deg(w̄ri) ≥ n− e > e+ k − 1 ≥ deg(vif)

And thus the degree of pi is equal to the degree of w̄ri which is strictly
decreasing because the degree of the remainders ri are strictly decreasing
themselves. This ends the first part of the proof showing that the same
sequence of consecutive quotients is obtained and therefore also the same
ui and vi during the first m steps. Looking at pm+1 we have:

pm+1 = w̄rm+1 + vm+1f

52

And since rm+1 = 0 by definition, this expression becomes:

f =
pm+1

vm+1

Giving the desired result. �

Example
Consider the code GRS[5, 3, 3] over F5 evaluated at α = (0, 1, 2, 3, 4) with
λ = 1. Assume the received word is y = (1, 3, 0, 2, 0), then by applying the
algorithm, we have:

p0 = z5 − z
And, by Lagrangian interpolation, we can find p1 passing through all the
points:

p1 =
∑
i

yi

∏
j 6=i(z − αj)∏
j 6=i(αi − αj)

= 1
z4 − 1

(−1)(−2)(−3)(−4)
+ 3

z(z − 2)(z − 3)(z − 4)
1(−1)(−2)(−3)

+ 2
z(z − 1)(z − 2)(z − 4)

3.2.1(−1)
= 4z4 + z3 + 4z2 + 3z + 1

By applying the extended Euclidean algorithm, the following results are
obtained:

i pi qi ui vi
0 z5 − z 1 0
1 4z4 + z3 + 4z2 + 3z + 1 4x+ 4 0 1
2 2x2 + 3x+ 1 STOP 1 x+ 1

and there is no need to continue further by computing the quotient q2 since
the stopping condition has already been met, namely deg(p2) = 2 < n+k

2 =
4. By dividing the remainder p2 by v2, we obtain:

2x2 + 3x+ 1 = (x+ 1)(2x+ 1) + 0

And therefore our decoding is successful and the encoding polynomial is
f(z) = 2x+ 1. By re-encoding, we obtain:

x̂ = (1, 3, 0, 2, 4)

which differs only in the last symbol from the received word y.

53

The source code for a GRS encoder and a ”Euclidean decoder” can be
found in the appendix.

7.2 The key equation

This subsidiary section contains complementary material about the key
equation. It constitutes the central part of several well known decoding
algorithms widely used in practice.

Theorem
The dual of a GRS(n,k,α,λ) code is a GRS(n,n−k,α,ρ) code itself with:

ρ−1
i = λi

∏
j 6=i

(αi − αj)

Proof

The fact that the dual is a GRS code itself has been proved in
the beginning of this chapter. Let us now prove that the coefficients are
the correct ones. Let f(x) be an encoding polynomial of degree at most
k− 1 of the GRS code and let g(x) be an encoding polynomial of degree
at most n− k − 1 of the dual GRS code. Let us show that:∑

λif(αi)ρig(αi) = 0

The function f(x)g(x) can be expressed using the Lagrange interpo-
lation as:

f(x)g(x) =
∑
i

f(αi)g(αi)

∏
i 6=j(x− αj)∏
i 6=j(αi − αj)

When instantiating x to αi, all terms vanish except the one which is
equal to f(αi)g(αi) as it should be.

Since the product of f(x) by g(x) is a polynomial of degree at most
n− 2, equating the coefficients of xn−1 on both sides gives:

54

0 =
∑
i

f(αi)g(αi)
1∏

i 6=j(αi − αj)

=
∑
i

λif(αi)
1

λi
∏
i 6=j(αi − αj)

g(αi)

=
∑
i

(λif(αi))(ρig(αi))

Which completes the proof. �

Example
Let us define the GRS[n = 7, k = 3, d = 5] over F11 evaluated at α =
(1, 2, 3, 4, 5, 6, 7). It can correct up to 2 errors. The multiplication table of
F11 can be found in APPENDIX X.X.

G =

1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 4 9 5 3 3 5


The normalizing coefficients of the dual GRS code are:

ρ = (9, 1, 3, 7, 3, 1, 9).

This leads to the following parity matrix:

H =


9 1 3 7 3 1 9
9 2 9 6 4 6 8
9 4 5 2 9 3 1
9 8 4 8 1 7 7



Knowing the expression of the paritiy check matrix, the syndrome can
be expressed as follows:


s1

s2
...

sn−k

 =


1 1 ... 1

ρ1α1 ρ2α2 ... ρnαn
ρ1α

2
1 ρ2α

2
2 ... ρnα

2
n

...
...

...
ρ1α

n−k−1
1 ρ2α

n−k−1
2 ... ρnα

n−k−1
n




e1

e2
...

en−k



55

And, by isolating each component of the syndrome:

sj =
∑
i

eiρiα
j−1
i

Let us now take every syndrome component into account:

s(z) =
n−k∑
j=1

sjz
j−1

=
n−k∑
j=1

∑
i

eiρiα
j−1
i zj−1

=
∑
i

eiρi

n−k∑
j=1

αj−1
i zj−1

=
∑
i

eiρi

(
1− (αiz)n−k

1− αiz

)
Since terms with ei = 0 do not contribute to the latter sum, it is equivalent
to consider this sum over the set of error locations I = {i|ei 6= 0}. With a
few manipulations, the above equation becomes:∏

i∈I
(1− αiz)s(z) =

∑
i∈I

eiρi
∏

j∈I\{i}

(1− αjz) (mod zn−k)

This expression can be expressed more elegantly as the key equation:

σ(z)s(z) = ω(z) (mod zn−k)

with
σ(z) =

∏
i∈I

(1− αiz)

and
ω(z) =

∑
i∈I

eiρi
∏

j∈I\{i}

(1− αjz) (mod zn−k)

The polynomial ω(z) is called the error locator polynomial because it tells
us at which coordinates the errors are:

I = {i|σ(α−1
i) = 0}

56

Once these error locations are known, the error evaluator polynomial ω(z)
gives us the exact error at a given position:

∀i ∈ I : ei =
ω(α−1

i)
ρi
∏
j∈I\{i}(1− αjα

−1
i)

Therefore, the decoding of a codeword necessitate to solve the key equation
by finding σ(z) and ω(z). There exist several efficient techniques to do this
and we invite the interested reader to the extensive literature about this
subject, for example [1].

7.3 Conclusion

Reed-Solomon codes have many advantages. They provide excellent error-
correcting abilities since they reach the Singleton bound. Moreover, k can
be chosen freely and therefore GRS codes can be used for nearly any rate.
Lastly, they have efficient bounded distance decoding techniques decoding
up to n−k

2 errors and polynomial running time in O(n2).
One drawback they have is that they are based on large alphabets. If

they are mapped to smaller alphabets, their length and dimension increase
proportionally but their distance does not change. These mapped codes
however remain excellent concerning error bursts since a block of successive
errors affects only a few symbols in the bigger alphabet. Because error bursts
is a common pattern, these codes are widely used in practice. Let us stress
again the fact that mapping a GRS code to a smaller alphabet is not well
suited if the errors are completely random.

57

Part II

Soft decoding

58

Chapter 8

Introduction

8.1 What do we achieve here?

The algebraic algorithm we present here is a breakthrough in the field. Clas-
sical algorithms either perform hard-decoding up to n−k

2 errors, or are run-
ning in exponential time and were thus of very limited practical use due to
their complexity exploding behavior. This algorithm outperforms both by
providing soft-decoding in polynomial time. Moreover, it can handle hard-
decoding also as a special case. For both, the gains are substantial. For
hard-decoding, it provides list-decoding beyond the classical n−k

2 bound for
low rates easily. For high rates this is also the case but the cost grows dras-
tically in this latter case. However, its real strength lies in soft-decoding,
taking advantage of the full information available. Using soft-decoding, the
performances improvement of the error correction ability is substantial while
running in polynomial time. Moreover, it has some other advantages. For
example, the trades-off between decoding complexity and decoding perfor-
mance can easily be fine tuned. Another side effect is that erasures are
naturally handled. Moreover, and not unimportant, the algorithm can be
extended to BCH and algebraic-geometry codes. Lastly, as bonus if I may
say, the algorithm provides beautiful underlying mathematics.

8.2 History and results

In 1996, Sudan presented a new kind of algorithm for hard-decoding Reed-
Solomon codes [5]. He placed the problem in a new light and transformed
the problem of decoding to a problem of polynomial fitting. This led to a
new algorithm providing list-decoding beyond the error-correction radius of

59

n−k
2 for low rate RS codes. This triggered a renewed and intense interest

in the research community. A few years later, Sudan and Guruswami ex-
tended the algorithm and provided a better error-correction ability at any
rate [6]. However, increased error-correction ability comes hand-in-hand
with increased computational cost. For high rate codes, these are significant.
Then Koetter and Vardy generalized it one step further to take advantage
of the soft-information from the channel [9]. This leads to the algebraic soft-
decision Reed-Solomon decoding algorithm we present here. The algorithm
has two main parts consisting in interpolation and factorization of bivari-
ate polynomials (over finite fields). For these two tasks, efficient solutions
were presented by [12] and [13]. Research is still active in this ”hot” area,
various modifications and improvements were already published and further
advancements are to be expected.

8.3 General outline

The first chapter covers Sudan’s initial algorithm in full length. It offers an
understanding of the global process, of the algorithm as a whole and will be
valid for the other algorithms too. Then, the extension of Guruswami-Sudan
is implicitly presented in chapter two leading directly to a presentation of
the core theorem of the algorithm: a condition on successful decoding. This
is presented in a fashion naturally made to be extended to the soft-decoding
adaptation from Koetter and Vardy in chapter three. This one consists of a
mapping of the soft-information from the channel to the multiplicity matrix
introduced later and a few comments on performances. While chapter one
gave the overview and chapter two and three give reasons on why it works
and what conditions should be satisfied, the two next chapter are about
practical tasks. As for Sudan’s initial algorithm, two main steps remain:
the interpolation and the factorization of a bivariate polynomial. Efficient
ways of performing these are seen in chapter four and five, respectively.
Lastly, some recent improvements are briefly outlined, and a conclusion is
given.

60

Chapter 9

The Sudan algorithm

In this chapter, we cover completely Sudan’s algorithm which pioneered
the field. This algorithm was the first in its genre and the source of all
the subsequent algorithms like the algebraic soft decoding which is in fact
just a layer upon it. Therefore, understanding the easier Sudan algorithm
first helps greatly to understand the big picture and to grasp some of the
underlying concepts also valid for the other algorithms.

9.1 Introduction

In 1996, Madhu Sudan presented in [5] a new and innovative way of decod-
ing Reed-Solomon and algebraic geometry codes. Before, every decoding
scheme was based on the analysis of the syndrome. The new approach of
Sudan is based on a geometrical interpretation of the problem. This did
not only opened new ways of considering the decoding problem of Reed-
Solomon codes, but also provided a more powerful list-decoding. Before, all
the classical decoding algorithms decoded at a distance up to n−k

2 . We will
see that Sudan’s algorithm performs list-decoding beyond this bound for low
rate codes.

9.2 Decoding problem reformulation

As seen in chapter 7, codewords from a RS code are the evaluation of an
encoding polynomial at given locations. Let some f(z) be the encoding
polynomial and let α = (α1, ..., αn) be the locations where it is evaluated.
The codeword can be represented as a set of n points (αi, f(αi)) as we saw
before.

61

Let x = (x1, ..., xn) be the sent codeword so that xi = f(αi), and
y = (y1, ..., yn) be the received word. Moreover, let e be the numbers of
errors. In other words, xi 6= yi at e different positions. This also means
that by comparing (αi, xi) with (αi, yi), we see that e points differ, those
corrupted by noise, while n − e are identical. A polynomial f(x) is said to
pass through a point (α, β) if f(α) = β.

So, by paraphrasing what is said above, the encoding polynomial passes
through n− e of the received points. This leads to the objective to find all
polynomials passing through at least n− e of the received points.

Example
The encoding polynomial 2z+3 over F11 evaluated at α = (1, 2, 3, 4, 5) gives
the following set of points:

{(α1, x1), ..., (α5, x5)} = {(1, 5), (2, 7), (3, 9), (4, 0), (5, 2)}

Now, suppose that the received codeword has been corrupted in the second
and third position (|e| = 2) so that the following set of points is obtained:

{(α1, y1), ..., (α5, y5)} = {(1, 5), (2, 7), (3, 9), (4, 9), (5, 9)}

-

6

α

x

s
s

s

s
s

⇒ -

6

α

y

s
s

s s s

Here, the polynomials of degree less than 2, i.e. lines, passing through at
least 3 points from (αi, yi) are:

• 2z + 3 which passes through (1,5), (2,7) and (3,9)

62

• 9 which passes through (3,9), (4,9) and (5,9)

In this case, both codewords would be at a distance 2 from y and are
two equiprobable candidates for decoding.

What we get is a list of all polynomials corresponding to codewords at a
distance at most e from the received codeword y. To our delight, the list is
usually rather short. Before going further, it should be noted that we do not
know the value of e beforehand. Therefore, we will instead use a constant τ
denoting the decoding radius, or in other words, the number of points that
can differ.

As can be seen, the decoding problem has shifted from finding the near-
est codeword to a polynomial fitting problem. This problem translation has
two advantages. First, the polynomial fitting problem is more general since
it can be generalized to other fields like the reals or complex while it can
also be used in a much larger panel of applications. Secondly, this abstrac-
tion enables us to put codes by side. It is now a polynomial fitting problem
and can be handled independently, without requesting any error-correcting
codes knowledge. However, the connection will be kept all the way since it
is the aim of this work. To resume the whole, let us restate the problem to
refresh our mind:

Input:

• n points: (αi, yi) for 1 ≤ i ≤ n

• the decoding radius τ

• the maximum degree k − 1 of the fitting polynomial

Output:

• a list L containing all polynomials f(z) of degree less than k passing
through at least n− τ points.

As a reminder, this is equivalent to the decoding problem. Indeed, the
polynomials we will get will be the ones that encode codewords being at a
distance less than or equal to τ from the received codeword.

The main question this triggers is: how to (efficiently) find those poly-
nomials? Subsidiary questions are: for which values of τ does it work? And

63

lastly, how likely is it to obtain more than one fitting polynomial? All these
questions will be answered in this order.

It is now time to introduce Sudan’s algorithm. Before we attack the core
of the algorithm and the key aspect, we will need to define some vocabulary.

9.3 Weighted degree

Definition 24 The (a, b) weighted degree of a monomial xiyj is defined as:

wdeg(a,b)x
iyj = ai+ bj

Any polynomial is by definition just a finite weighted sum of monomials:
Q(x, y) =

∑
qijx

iyj . It is therefore natural to extend the definition of
weighted degree to polynomials in the following manner:

Definition 25 The (a,b) weighted degree of a polynomial Q(x, y) is the
largest weighted degree of its monomials.

Example
wdeg(1,7)x

2y3 = 2 + 3 ∗ 7 = 23
wdeg(1,4)(x6 + x3y + xy2) = max(6, 7, 9) = 9

The notion of weighted degree can be extended to any number of vari-
ables but two will suffice for our needs. The use of this can be illustrated
in the following situation. Consider a bivariate polynomial Q(z, F) and a
univariate polynomial f(z). If we replace F by f(z), we get:

Q(z, f(z)) =
∑

qijz
i(f(z))j

Therefore, if the maximum degree of f(z) is at most k−1 then the maximum
degree of Q(z, f(z)) is upper bounded by the (1, k − 1) weighted degree of
Q(z, F).

9.4 Overview

The algorithm is based on a bivariate polynomial called Q(z, F) 1 whose
(1, k − 1) weighted degree is Ω. When F is replaced by a polynomial f(z)

1 It is often noted as Q(x, y) in the literature but we have preferred the Q(z, F) notation
in this text. The reason of this choice is to improve clarity and to avoid possible confusion
between the variables x, y and the codewords x,y.

64

of degree less than k in Q(z, F), we get a univariate polynomial Q(z, f(z))
of degree less than or equal to Ω as seen previously.

Now, assume that we choose Q(z, F) so that Q(αi, yi) = 0 for every
i. We say that Q(z, F) is zero or vanishes at this point. An interesting
viewpoint is the algebraic curve defined by Q(z, F) = 0, this curve passes
through every point (αi, yi).

If f(αi) = yi for some αi then Q(z, f(z)) is zero as well for this value
αi since Q(αi, f(αi)) = Q(αi, yi) = 0. Thus, every αi such that f(αi) = yi
is also a root of the polynomial Q(z, f(z)). Therefore Q(z, f(z)) is either
the zero polynomial or has as many roots as the number of points that f(z)
passes through.

In the case f(z) passes through more than Ω points, the polynomial
Q(z, f(z)) should also have as many roots. Since a non-zero polynomial
cannot have more roots than its degree, there is no other possibility than
being the zero polynomial. To summarize it, if f(z) passes through more
than Ω points, then Q(z, f(z)) = 0. Which in turn implies that f(z) is an
F -root of Q(z, F)!

This condensed explanation will now be seen in more detail, step by step
and illustrated by a few examples for a better understanding.

9.5 Constraints for Q

The polynomial Q(z, F) should have two properties, it should vanish at all
points and have a weighted degree as small as possible. More formally,

Let Q(z, F) = qijz
iF j , with qij ∈ Fq. We want to ensure that:

• Q(αi, yi) = 0 for every i.

• Ω = wdeg(1,k−1)Q(z, F)] is minimal.

The first condition regroups n constraints, one for each point, that we
must satisfy. To find an appropriate Q(z, F) it is therefore sufficient to solve
a system of n equation, one for each point, where the unknowns are the
coefficients qij of the polynomial and the ziF j terms are evaluated at each
point. A non-trivial solution exists provided that the number of unknowns is
greater than n. Or in other words, we need more than n distinct monomials
at hand.

65

9.6 Monomial enumeration

The second condition requests that the weighted degree Ω of Q(z, F) should
be minimal, while the number of monomials is greater than n. It is obvi-
ous that the number of monomials is directly dependent on the maximum
weighted degree Ω they can have.

Definition 26 The set Ma,b(Ω) denotes the set of monomials having an
(a, b) weighted degree less than or equal to Ω.

The monomials can be conveniently represented on an infinite array. On
the picture below are shown all monomials of (1,3) weighted degree less than
or equal to 10.

-

6

x-degree

y-degree

u u u u u u u u u u uu u u u u u u uu u u u uu u
PPPPPPPPPPPPPPPPPPΩ = 10

Observe that M1,3(10) consists of all the points (with integer coordi-
nate) under the line going from y = 10/3 to x = 10. Thus, the number of
monomials of (a, b) weighted degree less than Ω is strictly greater than the
area of the triangle Ω2

2ab .
Let us now compute the exact number of monomials having a (1, k − 1)

weighted degree at most Ω. Let L = bΩ/(k − 1)c, there are:

• Ω + 1 monomials of the form xi

• Ω + 1− (k − 1) monomials of the form xiy

• Ω + 1− 2(k − 1) monomials of the form xiy2

• ...

Therefore, we obtain:

66

|M1,k−1(Ω)| =
L∑
i=0

(Ω + 1− i(k − 1))

= (L+ 1)(Ω + 1− L(k − 1)/2)

>
Ω2

2(k − 1)

Example
What is the amount of distinct monomials having a (1,3) weighted degree
at most 4? The answer is

∣∣M(1,3)(4)
∣∣ = 7 and the corresponding list of

monomials is: M(1,3)(4) = 1, x, x2, x3, x4, y, xy

9.7 Roots vs degree of Q

Let us now go to the core theorem which reveals the use of this.
Theorem
Given n points (αi, yi) where all αi have distinct values and let
wdeg1,k−1(Q(z, F)) = Ω.

If

• Q(αi, yi) = 0 for i ∈ [1...n]

• f(αj) = yj for j ∈ J where J is a subset of [1...n]

• deg(f(z)) < k and |J | > Ω

Then
(F − f(z))|Q(z, F)

Proof

If f(αj) = yj and Q(αj , yj) = 0 then

Q(αj , f(αj)) = 0

m

67

(z − αj)|Q(z, f(z))

And Q(z, f(z)) is either the all-zero polynomial or it can be expressed as

Q(z, f(z)) =
∏
j∈J

(z − αj)Q̃(z)

For some Q̃(z). On one side the degree of Q(z, f(z)) is at most Ω and
on the other side, Q(z, f(z)) has |J | roots. Since |J | > Ω by hypothesis
and the fact that a polynomial connot have more distinct roots than its
degree, Q(z, f(z)) must therefore be the all-zero polynomial so that f(z)
is an F -root of Q(z, F). �

This leads to Sudan’s algorithm which can be summarized as follows:

• Find the polynomial Q(z, F) of least weighted degree passing through
all the points (αi, zi).

• Factorize the polynomial and consider the factors of the form (F −
f(z)).

• Output the list of polynomials f(z) of degree less than k passing
through the most points.

9.8 Example

We will summarize this section with a small but complete example illustrat-
ing the algorithm. Let us work in the field F11 with the following parameters:
n = 5
k = 2
d = 5− 2 + 1 = 4
k − 1 = 1 (lines)

The encoding polynomial shall be x+ 1 evaluated at (1, 2, 3, 4, 5) so that
we have:

x = (2, 3, 4, 5, 6)

Assume the received codeword is:

y = (2, 3, 4, 0, 0)

68

Can we find (a list containing) the correct codeword back? We see that when
Ω = 2 we have |M1,k−1(Ω)| = 6 which is sufficient to find a Q(x, y) satisfying
the 5 constraints. Moreover, if wdeg1,1Q(z, F) ≤ 2, we can find any poly-
nomial passing though at least 3 points, which means that we can indeed
correct 2 errors! (Which could not be possible with classical decoding!)

Let Q(x, y) =
∑

i+j≤3 qijx
iyj . The coefficients must satisfy following

constraints:

q00 1 + q10 1 + q01 2 + q20 1 + q11 2 + q02 4 = 0
q00 1 + q10 2 + q01 3 + q20 4 + q11 6 + q02 9 = 0
q00 1 + q10 3 + q01 4 + q20 9 + q11 1 + q02 5 = 0
q00 1 + q10 4 + q01 5 + q20 5 + q11 3 + q02 3 = 0
q00 1 + q10 5 + q01 6 + q20 3 + q11 8 + q02 3 = 0

By resolving this system of equations, we get:

Q(z, F) = −F − zF + F 2

And by factorizing, we obtain:

Q(z, F) = F (F − (z + 1))

which contains one erroneous polynomial (the zero polynomial) and the
encoding polynomial z + 1 giving back the correct codeword (2, 3, 4, 5, 6).

Concerning the previous step, it should be clear that Q(z, F) has (z+ 1)
as F -root. Since Q(z, (z+ 1)) is zero at z = 1, 2 and 3 while being of degree
at most 2, Q(z, (z + 1)) can only be zero itself. Indeed, we can verify:

Q(x, (x+1)) = −(x+1)−x(x+1)+(x+1)2 = −x−1−x2−x+x2+2x+1 = 0

We hope this illustrative example enlightens the reader about the concepts
used.

9.9 Performances

To finish this section, let us look at how many errors in polynomial fitting
we can handle. In order to find Q(z, F) passing through all the points, we
must satisfy:

|M1,k−1(Ω)| > n

69

where Ω is the (1, k − 1) weighted degree of Q(z, f(z)). This condition is
fulfilled if

Ω2

2(k − 1)
> n

. The decoding is successful when f(z) passes through more than Ω points.
In other words, there should be less than n − Ω errors. By putting both
formulas together, the algorithm is succesful if:

e < n− Ω = n−
√

2n(k − 1)

This bound can be fine-tuned by looking at the inequality more closer
but it is sufficient to illustrate the better performances at low code rates.
Let us remember that, in comparison, classical decoding algorithms correct
up to e = n−k

2 errors. Let us define ε = e/n as the error correcting ability.
When n tends to infinity, we have:

• For classical decoding: ε = 1−r
2

• For Sudan’s algorithm: ε = 1−
√

2r

And both are illustrated on the graph below.

The error correction ability is high with fitting functions of low degree
but drops rapidly as the degree increases. This algorithm is very interesting
for low rate codes, however it becomes quickly inefficient as the code rate
grows. But as we will see, there are ways to improve a lot this algorithm to
get good results also for higher degree fitting functions, and thus for higher
code rates.

70

Chapter 10

Zeros, roots and constraints

This chapter is devoted to understanding the relationship between higher
order zeros, the roots of Q(z, f(z)) and the constraints on the polynomial
Q(z, F) to satisfy these zeros. Using the algebraic curve comparison, it
means that the curve passes through given points several times. In Sudan’s
algorithm, Q(z, F) is determined so that it is zero at each received point.
The idea remains the same but it is generalized to each point with zeros of
any multiplicity. The consequences of this will be the core theorem of the
algorithm seen in the next chapter.

10.1 Zeros of higher multiplicity

For a univariate polynomial f(x) = f0 + f1x + f2x
2 + f3x

3 + f4x
4 + ...,

we say that f(x) has a zero of multiplicity (or order) m at the origin if
f0 = f1 = ... = fm−1 = 0 so that it can be expressed as f(x) =

∑
i≥m fix

i.
Or equivalently we can say that xm|f(x). All these conditions are strictly
equivalent. As a side note, a null multiplicity is no zero at all.

To know the multiplicity of a zero at a given point α, we just have to
translate the polynomial so that its new origin is at α. This corresponds to
the translated polynomial f(x+α). Therefore, the zero multiplicity of f(x)
at α is simply the zero multiplicity of f(x+ α) at the origin.

We can define the multiplicity of zeros for Q(z, F) exactly the same way.

Definition 27 A polynomial Q(z, F) has a zero of multiplicity or order m
at (α, β) if Q(z + α, F + β) =

∑
i+j≥m qijz

iF j.

Q(z + α, F + β) is simply the polynomial Q(z, F) where the origin has
been translated to the point (α, β). Having a multiplicity of m just means

71

that this translated polynomial has no monomials of degree less than m.

Recall that in the Sudan algorithm, we proved that if f(α) = β and
Q(α, β) = 0 then (z − α)|Q(z, f(z)). This result will now be extended to
zeros of higher multiplicities in the following theorem.

Theorem
DIVISORS THEOREM
If Q(z, F) has a zero of order m at (α, β) and f(α) = β then

(z − α)m|Q(z, f(z))

Proof

By translation of z to z + α, proving that (z − α)m|Q(z, f(z)) is
equivalent to proving that zm|Q(z + α, f(z + α)).

Let us now consider the polynomial f(z + α)− β. Since it is zero at
the origin (for z = 0), we can rewrite it to become f(z + α)− β = zf̃(z)
for some f̃(z).

By replacing f(z + α) in the translated equation, we get Q(z +
α, zf̃(x) +β) and since Q(z, F) has a zero of order m at (α, β) we get the
final expression:

Q(z + α, zf̃(z) + β) =
∑

i+j≥m
qijz

izj f̃(z)k

which is divisible by zm as we wanted to show. �

Example
Let f(z) = z2 − 4 and Q(z, F) = (F − z − 2)2.

When (α, β) = (3, 5), it can be shown that f(α) = β and Q(z, F) has a
zero of multiplicity 2 at this point. Let us verify this. For f(α) we have:

f(3) = 9− 4 = 5.

And for Q(z + α, F + β) we have:

Q(z + 3, F + 5) = ((F + 5)− (z + 3)− 2)2 = (F − z)2

72

which has indeed a zero of multiplicity two.
Lastly, the theorem tells us that (z − 3)2|Q(z, f(z)) in this case and we

can verify:

Q(z, f(z)) = (z2 − z − 6)2 = (z − 3)2(z + 2)2.

And the desired result is obtained.

This can now be extended to any number of points. If f(z) passes
through n such points (αi, βi) and Q(z, F) has zeros of multiplicity mi at
these, then we have: ∏

i

(z − αi)mi |Q(z, f(z))

This is exactly the same reasoning as for Sudan’s algorithm.

10.2 Expressing the constraints

Let us now rename the parameters of Q(z, F) to become Q(x, y). This is
just a renaming for convenience, x has nothing to do with a codeword and
just stands for z. And as well about y which just stands for F . The subject
of this section is to determine the constraints that Q(x, y) must satisfy in
order to have zeros of given multiplicities at given points. Or better said, if
we express Q(x, y) as:

Q(x, y) =
∑

qijx
iyj

The question becomes: how can the coefficients qij be chosen so that Q(x, y)
has indeed zeros of given multiplicities at the given points? More precisely,
for some points (α, β), the polynomial Q(x, y) must have a zero of multi-
plicity m. This means that

Q(x+ α, y + β) =
∑

i+j≥m
q̃(α,β),ijx

iyj

where q̃(α,β),∗ are the coefficients of the polynomial translated to the point
(α, β).

Since the translation is a linear transformation, the translated coefficients
q̃(α,β),ij can be expressed as a linear combination of the original ones. To

73

see this, let us decompose the translated polynomial:

Q(x+ α, y + β) =
∑
i,j

qij(x+ α)i(y + β)j

=
∑
i,j

qij

[
i∑

u=0

(
i
u

)
xuαi−u

][
j∑

v=0

(
j
v

)
yvβj−v

]

Now we can establish a relationship between the coefficients q∗ of the initial
polynomial and the coefficients q̃(α,β),∗ of the translated one. By isolating
terms of given degree xuyv from Q(x+ α, y + β), we obtain:

q̃(α,β),uv = coef(xuyv) =
∑

i≥u,j≥v
qij

(
i
u

)(
j
v

)
αi−uβj−v

In a field of characteristic 0, this awkward expression is equivalent to a
very convenient one, namely the Hasse derivative.

Definition 28 The (u, v)th Hasse (mixed partial) derivative of Q(x, y) eval-
uated at (α, β) is:

DHu,v,(α,β) Q(x, y) =
(

1
u!v!

du

dxu
dv

dyv
Q(x, y)

)∣∣∣∣
(α,β)

Indeed, this definition is equivalent to the previous expression (...provided
the field is of characteristic 0). The sharp-eyed reader may have noticed that
in other fields, the Hasse derivative would in some cases reduce to 0

0 if we
treat it in a rigorous way. For example, the pth derivative of xn in Fq, where
q is a power of p, would reduce to 0

0 since in this field p ≡ 0. Therefore, the
two expressions are quite similar but are not strictly equivalent because of
the field characteristic. From now on, we shall use the notation Du,v,(α,β) to
express the coefficients q̃(α,β),uv to remind the extreme similarity with the
Hasse derivative.

q̃(α,β),uv = coef(xuyv) = Du,v,(α,β)Q(x, y)

Example
Let Q(x, y) = x3 + y2 + xy ∈ F11[x, y] and the point (2, 5). What are the
coefficients q̃(2,5),ij of Q(x+ 2, y + 5)?

We have:

74

D0,0,(2,5) Q(x, y) = (x3 + y2 + xy)
∣∣
(2,5)

= 43 = −1(mod11)

D1,0,(2,5) Q(x, y) = (3x2 + y)
∣∣
(2,5)

= 17 = 6(mod11)

D2,0,(2,5) Q(x, y) = (3x)|(2,5) = 6(mod11)
D3,0,(2,5) Q(x, y) = 1
D0,1,(2,5) Q(x, y) = (2y + x)|(2,5) = 12 = 1(mod11)
D1,1,(2,5) Q(x, y) = 1
D0,2,(2,5) Q(x, y) = 1

Thus, Q(x+ 2, y + 5) can be expressed as:

Q(x+ 2, y + 5) = y2 + xy + y + x3 + 6x2 + 6x− 1

In order to have a zero of multiplicity m at (α, β), we must have all the
coefficients of the translated polynomial q̃i,uv = 0 whenever u+v ≤ m. This
is equivalent to satisfying the set of constraints:

D = {Du,v,(α,β) Q(x, y) = 0|u+ v ≤ m}

And this set contains m(m+1)
2 linear constraints since this is the number of

couples u, v satisfying u+ v ≤ m.
This can be generalized to any number of points with zeros of any multi-

plicities easily. Moreover, each constraint can be expressed as a linear com-
bination of the coefficients from the initial polynomial Q(x, y). A system of
linear equations is obtained where each equation expresses a constraint.

Example
Let Q(x, y) = q00 + q10x+ q20x

2 + q01y + q11xy. Is it possible to find values
for the different qij so that Q(x, y) has a zero of order 2 at p = (2, 3)?

The answer is yes! Indeed Q(x, y) has a zero of order 2 at p if it satisfies
this set of constraints:

D = {D0,0,p, D1,0,p, D0,1,p}
So that the following system of equations is obtained:

D0,0,pQ = q00 + 2q10 + 4q20 + 3q01 + 6q11 = 0
D1,0,pQ = q10 + 4q20 + 3q11 = 0
D0,1,pQ = q01 + 2q11 = 0

75

By solving it, we obtain that Q(x, y) can be any linear combination of:

4− 4x+ x2 and 6− 3x− 2y + xy

When we take a closer look at both of these components, we see that they
are equivalent to:

(x− 2)2 and (x− 2)(y − 3)

And it is easily seen that both of these components have second order zeros
at (2, 3).

To conclude, let us say that Q(x, y) can be found in polynomial time
since it is sufficient to solve a system of linear equations expressing the
required constraints. Since a zero of multiplicity mi at a point pi can be
expressed as mi(mi+1)

2 linear constraints on the coefficients of Q(x, y), we
obtain a system of linear equations with

∑
i
mi(mi+1)

2 constraints.
Finding a nonzero polynomial satisfying these constraints can be done by

solving a system of linear equations provided that there are more coefficients
than constraints. Therefore, the weighted degree ofQ(x, y) must be just high
enough to have more coefficients than this value.

76

Chapter 11

The core theorem

11.1 Multiplicity Matrix

In order to keep track of the zeros of Q(z, F), more precisely of where they
are located and what multiplicities they have, let us define the multiplicity
matrix. From now on, we will assume that α = (α1, ..., αn) are the locations
where the RS code is evaluated and β = (β1, ..., βq) be the vector containing
all the elements of Fq.

Definition 29 The multiplicity matrix M ∈ Nn×q is defined so that for all
i and j, the polynomial Q(z, F) has a zero of multiplicity mij at the point
(αi, βj).

Example
Let the field we are working in be F5 so that β = (0, 1, 2, 3, 4) and let
α = (0, 2, 4). Then the following multiplicity matrix:

M =

0 0 0 7 0
0 0 8 0 0
0 9 0 0 0


means that the polynomial Q(z, F) has:

• A zero of multiplicity 7 at (0,3)

• A zero of multiplicity 8 at (2,2)

• A zero of multiplicity 9 at (4,1)

77

Before stating the core theorem of this section, a little vocabulary and
tools are needed. Two important notions associated with M are its cost and
the score of a word for M that we will define shortly. But first, let us define
the inner product since it will help us to define the two others.

Definition 30 The inner product • of two matrices A and B is defined as:
A •B =

∑
ij aijbij

Now that we know what the inner product is, the cost and the score can
be defined with more ease.

Definition 31 The cost of the matrix M is defined as:

Cost(M) =
1
2
M • (M + J) =

∑
ij

1
2
mij(mij + 1)

where J is the all one matrix.

The cost of a matrix M is the number of linear constraints on the coef-
ficients of Q(z, F) that must be satisfied.

Definition 32 The score of the word w for the matrix M is

ScoreM (w) = M • 〈w〉 =
∑

i,j|xi=βj

mij

Where 〈w〉 is the n × q matrix with entries 〈w〉ij = 1 when xi = βj and
〈w〉ij = 0 else. In other words, for each row i, there is a 1 at the column j
when wi = βj and 0 elsewhere.

The following brief example illustrates these definitions and will certainly
reveal their simplicity.

Example
Consider the matrix M of the previous example.

M =

0 0 0 7 0
0 0 8 0 0
0 9 0 0 0


Its cost of M is:

78

Cost(M) = 28 + 36 + 45 = 109,

and the score of a word w = (3, 0, 1) is:

ScoreM (w) =

0 0 0 7 0
0 0 8 0 0
0 9 0 0 0

 •
0 0 0 1 0

1 0 0 0 0
0 1 0 0 0

 = 7 + 0 + 9 = 16.

The score is the sum of the multiplicities associated with the points
(αi, wi).

Using these two notions, the following theorem can be stated elegantly.
It defines a condition for which f(z) is an F -root of Q(z, F) and is the
cornerstone of the whole algorithm.

Theorem
DECODING THEOREM
LetQ(z, F) be the polynomial satisfying the multiplicities defined byM with
wdeg1,k−1(Q(z, F)) = Ω, and let f(z) be an encoding polynomial evaluated
in α resulting in the codeword c (we have f(αi) = ci).
If

|M1,k−1(Ω)| > Cost(M) and ScoreM (c) > Ω(M)

then
(F − f(z))|Q(z, F).

Proof

Recall that Cost(M) is the number of constraints that Q(z, F)
must satisfy. Therefore, the condition

|M1,k−1(Ω)| > Cost(M)

ensures that there are more monomials at hand than linear equations and
thus a non-zero Q(z, F) exists.

Since Q(z, F) has a zero of multiplicity miji at (αi, ci) for all i and
with ji so that ci = βji , we obtain by the divisor theorem that:∑

i

(z − αi)miji |Q(z, f(z)).

79

Thus, the polynomial Q(z, f(z)) is either the all-zero polynomial or has
(at least)

∑
imiji = ScoreM (c) roots.

Recall that the degree of Q(z, f(z)) is bounded from above by the
weighted degree of Q(z, F), equal to Ω. Thus, when

ScoreM (c) > Ω(M)

then the polynomial Q(z, f(z)) would have more roots than its degree and
it must therefore be the all-zero polynomial. In other words, we have:

(F − f(z))|Q(z, F)

which concludes the proof. �

Let us stress that understanding the previous theorem and its proof is
crucial. That f(z) is an F -root of Q(z, F) means that we can ”extract it”
by factorizing Q(z, F). This reduces to a very simple but strong statement:
if

ScoreM (x) > Ω(M)

then the decoding is successful. The algorithm naturally flows from the
theorem and is presented in the upcoming section. For the moment, we can
already see that increasing the multiplicities in M increases the potential
score as well as the cost of the matrix. Thus, it is important to choose the
values in a suitable manner. We will see that with higher values we can
obtain finer decoding but since the cost of M is the number of constraints
to satisfy, it is directly linked to the algorithm complexity. This provides a
trade-off between correction ability and computational complexity.

11.2 Algorithm and example

The algorithm steps can be illustrated as follows:

80

channel information
↓ Choosing Multiplicities
M
↓ Interpolation

Q(z, F)
↓ Factorization∏

(F − f(z))Q′

↓ Selection
f(z)

Let us now look at the steps more closely and at the same time give an
overview of what is awaiting us in the next few chapters.

• The first step of the algorithm consists of determining the multiplicity
matrix M given the soft or hard-information of the channel to optimize
the probability of successful decoding. This is the subject of the next
chapter.

• GivenM , the next step is to find a polynomialQ(z, F) of least weighted
degree satisfying the multiplicities defined by M . With c = Cost(M),
we saw that such a polynomial can be found by solving a system of c
linear equations, having a little more than c unknowns. Solving this
system of equation with classical means would result in a complexity of
O(c3). In chapter 13, we present a more effective way to ”interpolate”
such a polynomial with a complexity of O(c3/k).

• OnceQ(z, F) is obtained, the factors of type F−f(z) where deg(f(z)) ≤
k − 1 must be filtered out in order to output the list L of all of such
functions. An efficient way of doing this in polynomial time is seen in
chapter 14.

• Lastly, once the list of functions is obtained, they are reencoded to
test their likelihood using the channel information and the most likely
one is returned as the final output. This last operation is simple and
how to do this is mentioned in the end of next chapter.

An important part is however missing for our understanding right now:
what is the meaning of M? how are these multiplicities chosen? Although
this is explained in the next chapter, let us say that an entry mij corresponds
to the level of confidence we have that f(αi) = βj . It turns out that one
way to construct M is to choose multiplicities directly proportional to the
likelihood that the ith symbol is βj . Thus, high multiplicities at given points

81

reflect a high probability that the encoding function passes through these
points whereas low multiplicities mean that they have low probabilities to
pass through these.

Example
Assume a RS code over F5 having parameters n = 5 and k = 3 with eval-
uator locations α = (0, 1, 2, 3, 4). Assume that, based on the channel’s
information, the following multiplicity matrix is computed (we will discover
how in the next chapter):

M =


0 0 2 1 0
0 0 0 3 0
0 0 0 2 1
1 2 0 0 0
1 2 0 0 0


The cost of M is:

Cost(M) = (3 + 1) + (6) + (3 + 1) + (1 + 3) + (1 + 3) = 22.

Since k = 3, the weighted degree of Q(z, F) must be equal to Ω = 8 so
that |M1,k−1(Ω)| = 25 > 22. The following figure shows a graphical repre-
sentation of M where the dots have a radius proportional to the multiplicity
at this point.

-

6

α

β

x
s | x

s

s
x

s
x

A polynomial Q(z, F) satisfying these multiplicities is:

Q(z, F) = 4 + 4z + 2z2 + 3z3 + z5 + z6 + 4z7 + 3F + 2zF + 2z2F + z4F

+2z5F + z6F + 4F 2 + 3zF 2 + 2z2F 2 + 4z3F 2 + 3F 3

82

By factorizing it, we obtain:

Q(z, F) = [F − (2 + z)][F − (2 + 2z)][F − (3 + z + z2)]

Thus, three potential encoding functions are considered:

• z + 2

• 2z + 2

• 3 + z + z2

When computing the points they pass through and summing the multi-
plicities at these points, we conclude that a single function has a high enough
score, namely:

f(z) = z + 2.

The function passes through the points

(0, 2), (1, 3), (2, 4), (3, 0), (4, 1)

And its score x̂ is:

ScoreM (x̂) = 2 + 3 + 1 + 1 + 2 = 9 > Ω = 8

Computing the score can be done quickly by looking at the graph above and
looking at the multiplicities of the points directly. In the end, the algorithm
outputs f(z) = z + 2 which is the best candidate for decoding.

83

Chapter 12

Multiplicity assignment

In the previous chapter, we saw that the output list of the algorithm contains
the sent codeword x ∈ C under the following condition:

ScoreM (x) > Ω(M),

where Ω(M) is the smallest integer such that |M1,k−1(Ω)| > Cost(M).
Knowing this, the remaining question is: how to choose the matrix M?

This chapter shows how to find ”good” matrices M in the sense that they
maximize the probability of correct decoding, or better said, an approxima-
tion thereof.

12.1 The reliability matrix

Let us start where everything starts: the channel. In our case, the input
consists of symbols taken from a finite set, namely the elements of the field
Fq. We will denote the input as the discrete variable X which takes values
in Fq.

Under the assumption that the channel is memoryless, it can be char-
acterized by transition functions p(Y = y|X = βj) for every βj ∈ Fq. They
define the probability of receiving y when having sent βj .

Given these probabilities, it is easy to compute the reverse conditional
probabilities using Bayes’ rule:

p(X = βj |Y = y) =
p(y|X = βj)p(X = βj)∑
l p(y|X = βl)p(X = βl)

Moreover, under the assumption that X is uniformly distributed over Fq,

84

the above formula can be simplified into:

p(X = βj |Y = y) =
p(y|X = βj)∑
l p(y|X = βl)

If we perform this computation for every received symbol yi, we obtain the
reliability matrix.

Definition 33 The reliability matrix Π is an n × q matrix with entries
defined as: πi,j = p(Xi = βj |Yi = yi).

To summarize it, each entry of Π is the probability that the ith symbol
from the sent codeword is βj . We saw in the previous chapter that a code-
word from an RS code can be represented as a set of n points (αi, xi = f(αi)).
Placed in this light, the entries correspond to the confidence we have that
f(αi) = βj (based on the yi value received).

The sent and received codewords can be represented, respectively, by
a vector of random variables X = (X1, ...,Xn) and Y = (Y1, ...,Yn). Note
however that the a posteriori probability p(X = x|Y = y) are not equal to∏
i p(X = xi|Y = yi) since the Xi are not independent. The equality would

apply if the vectors x would a priori be taken from Fnq . However, this is
not the case since they are taken from C(n,k) ⊂ Fnq . Moreover, it should be
pointed out that finding p(X = x|Y = y) would be equivalent to maximum
likelihood decoding which is NP-complete.

12.2 Setting the problem

The sent codeword x is unknown to the decoder. The only information the
decoder has at hand is some stochastic information about the likelihood of
each sent symbol. Therefore, from the decoder’s perspective, the sent code-
word can be seen as a random variable X = (X1, ...,Xn). The probability
that a codeword w ∈ Fnq was sent can be stated as follows:

p(X = w|y) =
{

0 if w /∈ C
γ−1

∏
p(Xi = wi|yi) if w ∈ C

where γ =
∑

c∈C
∏
i p(Xi = ci|yi).

Given this distribution, the optimal multiplicity matrix Mopt is the one
which maximizes the probability of decoding:

Mopt = argmaxMopt
p(ScoreM (X) > Ω(M))

85

Unfortunately, this optimization problem is inherently difficult because of
two reasons:

• the matrix M affecting both sides of the inequality,

• the conditional probabilistic model for p(X = x).

Moreover, Koetter and Vardy showed that this optimization problem is not
tractable and that finding the optimal Mopt reduces to an NP-hard prob-
lem [9]. Therefore, a simplified model is used, tackling both of the above
difficulties while remaining a good approximation.

Let Mc be the (finite) set of matrices whose cost is c. To deal with the
first issue, the solution is to find M ∈ Mc maximizing the expected score
among matrices of equal cost c, that is

M = argmaxM∈Mc
E[ScoreM (X)].

The justification is twofold. First, it sounds intuitively reasonable and makes
sense. Secondly, Koetter and Vardy computed bounds on the error proba-
bility based on this approximation showing it is asymptotically ”good” [9].

Based on this reformulated problem, we are now concerned with how to
compute the expected score E[ScoreM (X)] of a matrix M . To do this, the
following approximation is needed, concerning the probability that x was
sent:

p̂(X = x|y) =
∏

p(Xi = xi|yi).

This would be the a posteriori distribution of X given y if the codewords
were a priori uniformly taken in the entire space Fnq . Therefore, the decoder
does not use all the available information and this results in a sub-optimal
problem. However, it enables one to solve the (approximate) optimization
model because the expectation of the score can now be computed:

Ê[ScoreM (X)] =def
∑

x∈Fn
q

M • xp̂(X = x|y)

= M •
∑

x∈Fn
q

xp̂(X = x|y)

= M •Π.

Indeed, Π is the component-wise addition of 〈x〉 p(x). To conclude this
section, we thus look for M such that

M = argmaxM∈Mc
M •Π

The two upcoming sections present two multiplicity assignment algo-
rithms, shortly MAAs, solving exactly this approximated problem.

86

12.3 Greedy MAA

One way to findM ∈Mc which maximizesM•Π is to construct it iteratively.
Starting with M0 as the all-zero matrix, the algorithm greedily increments
one of the entries of M at each iteration. Incrementing an entry by one has
two consequences:

• the cost is increased by mij + 1, this is the number of additional con-
straints to satisfy;

• the expected score is increased by πij .

Therefore, the best choice is to increment the entry having the best trade
off between gain and cost, that is, the greatest ratio πij

mij+1 .

Theorem
Input:

• the reliability matrix Π

• an integer s, indicating the number of interpolation points

Output:
the multiplicity matrix M = argmaxMM •Π among matrices of same cost.

Proof

Let us prove that the output of the algorithm is indeed the matrix
M = argmaxMM • Π among the matrices of same cost. To facilitate
the understanding, a geometric interpretation is used. Let us associate
to each position in M an infinite sequence of rectangles Rij,1, Rij,2, ...
having their length and height defined as follows:

• length(Rij,l) = l

• height(Rij,l) = πij/l

Notice that the area of a rectangle Rij,l is πij . Now, let the set of rectan-
gles associated to a multiplicity matrix M be

R = {Rij,l|1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤ l ≤ mij}

87

This set contains s rectangles, the number of interpolation points counted
with their multiplicities. Increasing the entry mij is by analogy adding
the rectangle Rij,mij+1, where its length is the number of constraints
added and its area is the increase of the expected score. By putting all
these rectangles side by side, the cost of M can conveniently be expressed
as the total length of the rectangles:

Cost(M) =
1
2

∑
ij

mij(mij + 1) =
∑
ij

mij∑
l=1

l =
∑
R∈R

length(R).

And the expected score of M is the total surface of all rectangles:

M •Π =
∑
ij

mijπij =
∑
ij

mij∑
l=1

πij =
∑
R∈R

area(R).

In this context, maximizing M for a given cost is equivalent to maximizing
the total area given its total length. It is obvious to see that this is done
by taking the set of the tallest rectangles and this is exactly what the
algorithm does. At each iteration, it picks the tallest rectangle. �

Notice that no comment was made about the number of iterations s =∑
mij which is also the number of interpolation points counted with their

multiplicities. Typically, s is chosen dynamically and the algorithm is stopped
just before Ω(M) (which directly depends on the cost) exceeds some fixed
threshold.

12.4 Proportional MAA

In the greedy MAA, the tallest rectangle available is taken at each itera-
tion so that all the remaining ones are smaller than some height threshold.
Therefore, for any value 0 < h < πmax, the algorithm includes, at some
iteration, all the rectangles taller than h whereas the remaining ones are
smaller. For all i, j we have:

πij
mij
≥ h > πij

mij + 1

When looking closer at it, the non-strict and the strict inequalities can be
swapped. Moreover, under the condition that h would be different than the

88

height of any rectangles, two strict inequalities could be used. However, the
formula as it is above is sufficient for us. Let us rewrite it:

πij
h
− 1 < mij ≤

πij
h

For convenience, let us take λ = h−1. The expression of mij becomes:

mij = λπij − ε ,with 0 ≤ ε < 1

This, in turn, is just the definition of the floor of λπij . Moreover, if λ < 1
πmax

is taken, then the above formula gives 0 for every mij and this corresponds
to the initial all-zero matrix for M . Therefore, for any fixed value of λ, the
greedy MAA produces, after an unknown number of iteration, a matrix M
which is:

M = bλMc

Thus, the multiplicity matrix proportional to Π is the optimal one among
multiplicity matrices of same cost. This provides a very efficient and prac-
tical way to obtain the multiplicity matrix quickly and easily: M is simply
chosen proportionally to Π. We call this the proportional MAA.

It is a shortcut of the greedy MAA obtaining instantly but exactly what
would be produced after many iterations by the greedy MAA. Nevertheless,
the latter one is still useful and the best method to choose M is to combine
both as follows. First, choose a reasonable λ and multiply the reliability
matrix multiplier by it to obtain a ”rough” multiplicity matrix M . Then,
to tweak it, apply the greedy MAA on it and stop just before an offset of
Ω(M). That way, the score is optimized in the sense that any additional
increment on M would cause Ω(M) to increase, which is unfavorable for the
main decoding condition ScoreM (x) > Ω(M).

12.5 Asymptotic hard-decoding performances

Notice that hard information is like having a reliability matrix with ones
for the most likely symbols and zeros for the others. In this light, Sudan’s
algorithm is clearly a special case of this general algorithm with n interpo-
lation points of multiplicity 1. The next historical step was to assign higher
multiplicities to each such point and was developed by Guruswami-Sudan
[6]. Every point (αi, yi) is assigned a multiplicity of m = λ for some fixed
λ. Let us compute the asymptotical error correcting ability as λ tends to
infinity. To construct Q(z, F), we must ensure that:

89

Ω2

2(k − 1)
>M1,k−1(Ω) >

1
2
nλ(λ+ 1).

By isolating Ω we obtain:

Ω >
√
n(k − 1)λ(λ+ 1)

Since the score is (n− e)λ the decoding is successful when:

(n− e)λ >
√
n(k − 1)λ(λ+ 1)

When λ and n tend to infinity, the condition becomes:

ε < 1−
√
r

This bound is illustrated on the graph hereunder, together with the error
correction ability of conventional decoders, namely ε = n−k

2 .

We see that the error correction ability of this kind of decoder is always
(at any rate) superior to conventional decoders. However, it should be kept
in mind that this holds when λ tends to infinity and therefore also the com-
plexity and runtime of the algorithm. For fixed values of λ, the bound varies
between the bound above and the bound presented in Sudan’s algorithm.

12.6 Asymptotic soft-decoding performances

These are harder to characterize due to their nature. It makes no sense
to talk in terms of error-correction ability since it does not depend on the
number of erroneous symbols but on the probabilities themselves.

90

Before going on, let us come back the last example of the preceding
chapter. In this example, the soft-decoding algorithm was successful, giving
as output f(z) = z + 2. When looking at the multiplicity matrix, one can
figure out that the hard-information corresponding to the matrix would have
been (2, 3, 3, 1, 1). When evaluating the decoded function, it results in the
codeword (2, 3, 4, 0, 1). This corresponds to two errors in terms of hard-
information. Since the minimal distance of the code is d = 3, conventional
decoders could only have corrected a single error and would therefore have
failed decoding the example.

Lastly, to select the codeword, it is sufficient to:

• First, reencode every obtained function so that a list of codewords
L = {c1, ..., cl} is obtained.

• Then, select the codeword ci ∈ L maximizing Π • 〈ci〉, proportional to
the probability of being the sent codeword.

Performances rely heavily on the code rate as well as the type of channel.
Moreover, improvements offering a better optimization model and better
MAAs than the initial work of Koetter and Vardy appeared several times
since then. Performances of the MAA presented here can be found in the
original paper of Koetter and Vardy [9]. Another paper of interest is the one
from Jiang and Narayanan which studies the performances of this algorithm
using this MAA analytically for the binary symmetric channel and binary
erasure channel [14]. The latest and best result however has been reported by
El-Khamy and McEliece in [15]. Based on an improved optimization model,
they obtain an MAA resulting in much better decoding performances than
with previously known MAAs.

91

Chapter 13

Kötter’s interpolation

We saw that finding a polynomial having zeros of given multiplicities at
given points reduces to satisfying a set of constraints D. In this chapter, we
review how to efficiently find the polynomial Q(x, y) of minimal weighted
degree and satisfying this set of constraints. As usual, some notions will be
needed as prerequisites for the understanding of the algorithm and its proof,
so here we go.

13.1 Monomial ordering

Let M[x, y] denote the set of monomials in x, y. The subject of this part is
to define a total order for M[x, y]. That is, for every pair φA = xiAyjA and
φB = xiByjB , it must be possible to say that φA is greater than or smaller
than φB according to the defined order. Not surprisingly, we shall order the
monomials according to their weighted degree. That is, the relation ≺ is
defined so that φA ≺ φB whenever wdeg1,k−1(φA) < wdeg1,k−1(φB).

However, this is not yet a complete order. Indeed, there can be several
monomials of the same weighted degree. For example, when k − 1 = 3, the
three monomials x6, x3y, y2 have all a weighted degree of 6. Therefore, a
way to distinguish them is needed. Arbitrarily, we say that the one with
higher y-degree is greater.

Definition 34 The complete order ≺ is defined as φA ≺ ψB if and only if
wdeg1,k−1(φA) < wdeg1,k−1(φB)

or
(wdeg1,k−1(φA) = wdeg1,k−1(φB) and degy(φA) < degy(φB)

92

Example
Consider the case where k−1 = 5 and two monomials are x6y2 and x4y3. In
this context, x6y2 ≺ x4y3 since wdeg1,k−1(x6y2) = 16 < wdeg1,k−1(x4y3) =
19

Example
As a second example, when k − 1 = 3 and the two monomials are x8 and
x2y2. Then x8 ≺ x2y2 since wdeg1,k−1(x8) = 8 = wdeg1,k−1(x2y2) but
degy(x8) = 0 < degy(x2y2) = 2

This complete order also provides us a way to enumerate the monomials
unambiguously. Monomials φi ∈ M[x, y] can now be linearly ordered and
form a sequence 1 = φ0 ≺ φ1 ≺ φ2 ≺ φ3 ≺ ...

Example
For k − 1 = 3, the resulting ordering is: 1 ≺ x ≺ x2 ≺ x3 ≺ y ≺ x4 ≺ xy ≺
x5 ≺ x2y ≺ x6 ≺ x3y ≺ y2 ≺ ...

Any polynomial Q(x, y) can be expressed as a sum of these ordered
monomials, i.e. Q(x, y) =

∑
i qiφi. Expressing it this way leads to two new

concepts, the leading monomial and the rank.

Definition 35 The leading monomial of a polynomial Q(x, y) is the mono-
mial of highest order. More formally: LM(Q) = φI where Q(x, y) =∑I

i=0 qiφi with qi 6= 0.

Definition 36 The rank of a polynomial is the order of its leading mono-
mial.

Example
Let k − 1 = 3 and Q(x, y) = 6x4 + 5xy. We obtain LM(Q) = xy and
Rank(Q) = Rank(LM(Q)) = 5

As a side note, the total order can also be used to represent Q(x, y) as a
tuple. This is simply done by defining that the ith entry in the tuple is the
coefficient of the ith monomial.

93

13.2 Kernels of constraints

As was seen previously, every constraint in our problem is of the form:

Du,vQ(x, y)|(α,β) = 0 : DiQ.

The expression on the left is the complete expression and on the right
an abbreviated form of it. Because the left notation is pretty heavy, the
abbreviated one DiQ will be adopted. This is done purely for convenience,
it is just a syntactic change where DiQ denotes the ith constraint. Notice
that we also dropped the variables of Q, again just for convenience.

The operator Di is what is called a linearfunctional. This means simply
that it maps vectors to values in a linear way.

Definition 37 A linear functional on a vector space S over a field F is a
function f : V → F which satisfies the following two properties:

• ∀u, v ∈ S : f(u+ v) = f(u) + f(v)

• ∀α ∈ F, u ∈ S : f(αu) = αf(u)

It should be clear to the reader that Di is a linear functional. Indeed
Q can be seen as a vector and the derivative is then evaluated at some
point resulting in a value. The two other properties are also satisfied for
derivatives, thus for Di.

Using a strandard terminology, the set of all polynomials Q so that
DiQ = 0 is called the kernel of Di.

Definition 38 kerDi = {Q|DiQ = 0}.

If QA, QB ∈ kerDi then αQA + βQB ∈ kerDi also since Di is a linear func-
tional. Indeed, we have:

Di(αQA + βQB) = αDiQA + βDiQB = α0 + β0 = 0

In other words, the kernel is a vector subspace of the polynomial space.

13.3 The algorithm

Now that we know about ranks and kernels, ”finding Q” can be reformulated
as follows. Find a Q of least rank so that Q ∈ kerD1 ∩... ∩ kerDCost

The idea behind Kötter’s interpolation algorithm is to satisfy the con-
straints one after another. Therefore, let us define the cumulative kernels.

94

Definition 39 The cumulative kernel Ki is defined as: Ki = K0∩ker(D1)∩
...∩ker(Di) where K0 is the set of all polynomials of weighted degree at most
Ω.

The cumulative kernel is simply the set of polynomials that satisfy the
set of the first i constraints.

INITIALIZATION
Let L be the maximum y-degree of Q(x, y), i.e. L = bΩ/(k − 1)c. The

algorithm initializes L+ 1 polynomials as follows:

Q0(x, y) = 1
Q1(x, y) = y

Q2(x, y) = y2

...

QL(x, y) = yL

In this initialization, each of the L + 1 polynomials Qj belongs to a
specific set. Namely the set Qj of polynomials whose leading monomial
have a y-degree of j.

Definition 40 Let Qj be the set of polynomials whose leading monomial
has a y-degree of j. More formally: Qj = Q ∈ Fq[x, y]|LM(Q) = x?yj.

Example
Consider k − 1 = 4. In this case the polynomial Q(x, y) = 3x7y2 + 5x2y3

has as leading monmial x7y2 and thus Q ∈ Q2.

An important fact is that Qj ∈ Qj will remain true at each step of the
algorithm.

ITERATION
At each iteration, one additional constraint is satisfied. At the same, the

y-degree of the leading monomial of every Qj keeps constant. That is, it is
ensured that LM(Qj) = x?yi after each iteration.

At the ith iteration, the constraint Di has to be satisfied. It has the
form: Du, vQ(x, y)|(α,β) = 0.

The order in which the constraints are satisfied is crucial but we are not
yet ready for it. A condition on the ordering of constraint satisfaction will
be explained in the proof. Let us ignore it for the moment. To ensure that
every polynomial Qj(x, y) satisfies this constraint, the following is done:

95

1. For each j, compute compute the discrepancy λj , i.e. the result of the
derivative on Qj :

λj = DiQj

If the discrepancy is zero. We are happy. The constraint is already
satisfied and there is no need to change Qj . Else...

2. Among all Qj having a non zero discrepancy, select the one of least
order. The index of this polynomial will be noted j∗.

3. For each j 6= j∗ where λj 6= 0, the updated polynomial Q′j is: Q′j =
λj∗Qj − λjQj∗ .

4. The updated polynomial Q′j∗ is: Q′j∗ = (x− α)Qj∗ .

This way, after each iteration, one more constraint is satisfied and Q′j is
the polynomial of least rank in its set.

Theorem
ITERATIVE INTERPOLATION THEOREM

At each iteration of the algorithm, assume that every Du−1,v constraint is

satisfied before Du,v.
If ∀j : Qj ∈ keri−1 ∩Qj

then Q′j is the polynomial of least rank in Qj ∩ Ki.

Proof

In the first case where the discrepancy is zero, the constraint is al-
ready satisfied. Moreover, if the polynomial was of lowest rank in its set,
it will remain so since

Ki = Ki−1 ∩ kerDi ⊆ Ki−1.

In the other case of a non-zero discrepancy, we update the polynomial
according to: Q′j = λj∗Qj − λjQj∗ .

96

Since Di is a linear functional and since by hypothesis both Qj and
Qj∗ belong to Ki−1, it is straightforward that (λj∗Qj − λjQj∗) ∈ Ki−1.
Moreover:

Di(λj∗Qj − λjQj∗) = λj∗DiQj − λjDiQj∗ = λj∗λj − λjλj∗ = 0.

Thus Q′j ∈ Ki−1 ∩ kerDi = Ki. Additionally, the rank of Q′j has not
changed since a polynomial of lower rank has been subtracted. Thus if
Qj was of lowest rank in its set, it will remain so since Ki ⊆ Ki−1.

The last point is a little more complicated. The lowest ranked poly-
nomial Qj∗ is updated by multiplying it by (x− α). Again, it is obvious
that Q′j∗ ∈ Ki−1. But is it also in kerDi? Here comes in play the condition
on constraints ordering that we omitted previously.

DiQ =
d

dx
Du−1,v(x− λj∗)Qj∗ = Du−1,vQj∗ + (x− α)Du,vQj∗

When evaluating the latter expression at (α, β), the equality becomes:

Du,v(x− λj∗)Qj∗ |(α,β) = Du−1,vQj∗ |ab

Thus, if the constraint constraint Du−1,vQ(x, y)|(α,β) is already satisfied,
before DiQ = Du,vQ(x, y)|(α,β) = 0 and is therefore in kerDi , else not
necessarily. �

END
To summarize it, after the ith iteration, every polynomial Qj is the

lowest rank polynomial in Ki ∩Qj . Thus, at the end of the algorithm, after
a number of iterations equal to the cost of M , the Qj obtained satisfy all the
constraints. Notice that the union of all Qj sets is the set of all polynomials
with y-degree less than or equal to L. The lowest ranked among the Qj
polynomials is therefore also the lowest ranked possible from the whole set
of polynomials with y-degree less than or equal to L.

Example
Let us work over F5 with α = (1, 2) and k = 4. Let the multiplicity matrix
be:

M =
(

0 0 0 0 1
2 0 0 0 0

)
.

97

The aim is to find the polynomial Q(z, F) having zeros of multiplicity
mij at (αi, βj). More precisely:

• A zero of multiplicity 1 at (1,4)

• A zero of multiplicity 2 at (2,0)

This is equivalent to satisfying the following constraints:

• D0,0Q(z, F)|(1,4) = 0

• D0,0Q(z, F)|(2,0) = D0,1Q(z, F)|(2,0) = D1,0Q(z, F)|(2,0)

The weighted degree of Q(z, F) must be at least Ω = 4.
INITIALISATION

Q0 = 1
Q1 = y

FIRST ITERATION
Let the constraint to satisfy for the first iteration be D0,0Q(z, F)|(1,4). We
have:
λ0 = D0,0Q0|(1,4) = 1
λ1 = D0,0Q1|(1,4) = 4
j∗ = 0
Thus:
Q′0 = (x− 1)Q0 = x− 1
Q′1 = 1Q1 − 4Q0 = y − 4

SECOND ITERATION: D0,0Q(z, F)|(2,0)

λ0 = D0,0Q0|(2,0) = −2
λ1 = D0,0Q1|(2,0) = −4
j∗ = 0
Q′0 = (x− 2)(x− 1) = x2 + 2x+ 2
Q′1 = −2(y − 4) + 4(x− 1) = 3y + 4x+ 4

THIRD ITERATION: D0,1Q(z, F)|(2,0)

Remark: the ordering condition imposes us to process D0,1 before D1,0.
λ0 = D0,1Q0|(2,0) = 0
λ1 = D0,1Q1|(2,0) = 3
Q′0 = Q0

98

Q′1 = (x− 2)(3y + 4x+ 4) = 3xy + 4y + 4x2 + x+ 2

FOURTH ITERATION: D1,0Q(z, F)|(2,0)

λ0 = D1,0Q0|(2,0) = 2x+ 2|(2,0) = 1
λ1 = D1,0Q1|(2,0) = 3y + 3x+ 1|(2,0) = 2
j∗ = 0
Q′0 = (x− 2)(x2 + 2x+ 2) = x3 + 3x+ 1
Q′1 = 1(3xy + 4y + 4x2 + x+ 2)− 2(x2 + 2x+ 2) = 3xy + 4y + 2x2 + 2x+ 3

And thus we obtain two polynomials satisfying the zeros of given
multiplicities. By factorizing both polynomials, the zeros become visible:
Q0 = x3 + 3x+ 1 = (x− 2)2(x− 1)
Q1 = 3xy + 4y + 2x2 + 2x+ 3 = 3(y − x+ 2)(x− 2)

The interpolation ends by selecting the polynomial of least order, Q0 in
this case.

13.4 Performances

The question is now: how does it compare to classical matrix solving? We
do |D| iterations. At each iteration, L + 1 polynomials are updated where
L is in O(|D|/k). Evaluating a constraint costs O(|D|) as well. Thus the
algorithm runs in O(|D|3/k).

13.5 Pseudo-code

input: M, k
output: Q

L = floor(ComputeOmega(M) / (k-1))
for l = 0 to L
Q[l] = y^l

for i = 1 to n
for j = 1 to q
if (M[i,j] != 0)

m = M[i,j]
a = alphas[i]

99

b = Fq[j]
for u = 0 to m - 1
for v = 0 to m - u - 1
lowestL = -1
for l = 0 to L

lambda[l] = ComputeD(u,v,Q,a,b)
if (lambda[l] != 0)
if (lowestL == -1 or rank(Q[l]) < rank(Q[lowestL]))
lowestL = l

if (lowestL != -1)
for l = 0 to L

if (lambda[l] != 0 and l != lowestL)
Q[l] = lambda[lowestL] * Q[l] - lambda[l] * Q[lowestL]

Q[lowestL] = (x - a) * Q[lowestL]

lowestL = -1
for l = 0 to L
if (lowestL == -1 or rank(Q[l]) < rank(Q[lowestL]))
lowestL = l

return Q[lowestL]

100

Chapter 14

Factorization

In this chapter, we investigate how to find the factors of the type (y− f(x))
in Q(x, y). More specifically, only the factors with f(x) of degree less than k.
The brute force method would be to test whether f(x) is a y-root of Q(x, y)
or not for each polynomial f(x). But of course, this would be outrageously
expensive in terms of computation time. For the same price, one could
directly test the best candidate among all possible codewords. This is of
course unreasonable and we therefore need an efficient algorithm running in
polynomial time.

The one we shall present here is known as the Roth-Ruckenstein factor-
ization algorithm, named after its inventors [13].

14.1 Roth-Ruckenstein factorization

Like in the interpolation algorithm, the idea here is not to get all at once
but the opposite. It is to find out the coefficients of the polynomials one by
one. Let us express a polynomial f(x) as:

f(x) = f0 + f1x+ f2x
2 + ...

Assume f(x) is a y-root of Q(x, y) so that Q(x, f(x)) = 0. By instantiating
x to 0, we have f(0) = f0 and also that Q(0, f0) = 0. In other words, it
means that f0 is a y-root of Q(0, y).

Definition 41 Let 〈〈Q(x, y)〉〉 be the normalized polynomial defined as fol-
lows:

〈〈Q(x, y)〉〉 = Q(x, y)/xm

where m is the greatest integer such that xm|Q(x, y).

101

The first coefficient f0 is of course also an y-root of 〈〈Q(0, y)〉〉:

(y − f0)|Q(0, y)⇔ (y − f0)|xm 〈〈Q(0, y)〉〉 ⇔ (y − f0)| 〈〈Q(0, y)〉〉

The reason to normalize is to avoid Q(0, y) to be the all-zero polynomial.
Using 〈〈Q(0, y)〉〉 6= 0, testing all the y-roots gives the first coefficient f0 for
all the polynomials in the list. Now that we have f0 at hand, the question
is how to find f1. Since we have:

(y − (f0 + f1x+ f2x
2...))|Q(x, y)

The key idea is to perform a smart change of variable. Namely, replacing y
by xy + f0 so that we have:

(xy + f0 − (f0 + f1x+ f2x
2...)) | Q(x, xy + f0)

m
x(y − (f1 + f2x+ f3x

2...)) | Q(x, xy + f0)
m

(y − (f1 + f2x+ f3x
2...)) | 〈〈Q(x, xy + f0)〉〉 = Q′(x, y)

Informally, we ”killed” the term f0 and it is now exactly the same situation as
before but headed by f1. Thus, exactly the same procedure can be repeated,
enabling us to ”pick” that second coefficient f1 the same way by taking the
roots of Q′(0, y). By repeating the process iteratively, all coefficients can be
picked one after another until all coefficients of f(x) are obtained. Let us
now prove the key iteration more formally.

Theorem
Let us define

f̃i(x) = fi + fi+1x+ fi+2x
2 + ...

and
Qi+1(x, y) = 〈〈Qi(x, xy + fi)〉〉 .

If
(y − f̃i(x))|Qi(x, y)

so that fi is an y-root of Qi(0, y). Then, by performing the change of variable
using fi we obtain:

(y − f̃i+1(x))|Qi+1(x, y)

so that fi+1 is a y-root of Qi+1(0, y).

102

Proof

By hypothesis, we have:

(y − f̃i(x)) | Qi(x, y)
m

(y − (fi + fi+1x+ fi+2x
2 + ...)) | Qi(x, y)

By performing the change of variable y → xy + fi we obtain:

(xy + fi − (fi + fi+1x+ fi+2x
2 + ...)) | Qi(x, xy + fi)

m
x(y − (fi+1 + fi+2x+ fi+3x

2 + ...)) | Qi(x, xy + fi)
m

(y − (fi+1 + fi+2x+ fi+3x
2 + ...)) | 〈〈Qi(x, xy + fi)〉〉

m
(y − f̃i+1(x)) | Qi+1(x, y)

as desired. �

Notice that this process splits up like a tree, for any coefficient fi found,
there may be multiple roots to Qi+1(0, y). This gives rise to several possible
polynomials sharing the same first i coefficients but with different remaining
ones. The process of picking each coefficient is repeated until the maximum
degree of f(x) is reached.

Example
Let us work in F5 and look for the factors (y− f(x)) with deg(f(x)) ≤ 2 in:

Q(x, y) = 2x+ x2 + x3 + 3x4 + y + 2xy + 4x3y + 2y2 + xy2

Since this polynomial is already normalized, no need to divide it further
by a power of x. Thus:

Q0(x, y) = 2x+ x2 + x3 + 3x4 + y + 2xy + 4x3y + 2y2 + xy2

The polynomial Q0(0, y) = y + 2y2 has two roots: 0 and 2. Let:

• Q1 be the polynomial corresponding to the change of variable y → xy

103

• Q′1 be the polynomial corresponding to the change of variable y →
xy + 2

Let us begin with Q1 and go back to Q′1 later.

Q1(x, y) = 2 + x+ x2 + 3x3 + y + 2xy + 4x3y + 2xy2 + x2y2

And Q1(0, y) has a single root: 3.

Q2(x, y) = 1y1 + 4x1y1 + 1x2y1 + 4x3y1 + 2x2y2 + 1x3y2

And Q2(0, y) has a single root: 0. This results in the first polynomial

f(x) = 3x

Let us now go back to the other alternative Q′1.

Q′1(x, y) = 1x1 + 4x2 + 3x3 + 4y1 + 1x1y1 + 4x3y1 + 2x1y2 + 1x2y2

And Q′1(0, y) has a single root: 0.

Q′2(x, y) = 1 + 4x1 + 3x2 + 4y1 + 1x1y1 + 4x3y1 + 2x2y2 + 1x3y2

And Q′2(0, y) has a single root: 1. This results in the second polynomial

f(x) = x2 + 2

In the end, the factorization outputs the two factors 3x and x2 + 2.

14.2 Pseudo-code

ListOfPolynoms = {}
void FactorizeRR(int i, BivarPoly Q_i, Poly f)

if(Q_i(x,0) == 0)
ListOfPolynoms += f

for each gamma in F_q
if(Q_i(0,gamma) == 0)

clone := f
clone[i] = gamma
if(i == k-1)
ListOfPolynomials += clone

104

else
Q_i_next += Normalize(Q_i(x, xy + gamma))
FactorizeRR(i+1 , Q_i_next, clone)

105

Chapter 15

Program notes

In this chapter, we present the source code provided along with this text.
It tells what the API provides, how to use it and a few implementation
notes. This includes examples of code excerpts to demonstrate how to use
the API. The program is primarily written for educational purposes, to
illustrate how the algorithm works, to experiment with the algebraic soft-
decoding and to see it in action. Besides of this, it provides also a limited
API that can be used for performing computation with polynomials in finite
fields, implementing encoders, decoders and other communication system
components. Lastly, it can also be used to provide benchmarks. Despite
the program favors clarity in spite of performances, these ones should be
acceptable and have the same running time asymptotic properties as in the
theory. The language C# was chosen because of several reasons: it is well
known, it is relatively efficient, it is multi-platform (in theory at least...)
and lastly it offers operator overloading which increases a lot readability as
well as comfort when writing and using the source code.

As a side note, a free IDE called visual C# express is provided by Mi-
crosoft. This IDE can be downloaded freely on the net, is extremely easy to
set up and getting the source code running is just a matter of minutes.

The program can be divided in four main parts:

• Algebra tools: classes for finite fields and polynomials over such fields

• Communication system: interfaces for encoders, channels and decoders

• Channel models: the different kind of channel models implemented

• Reed-Solomon: encoders and decoders for Reed-Solomon codes

106

15.1 Algebra

15.1.1 Finite fields

Two kinds of finite fields are currently implemented: prime fields and fields
whose size are a power of two. Their source code is in PrimeField.cs
and BinaryExtensionField.cs respectively. A finite field element is rep-
resented externally by the struct FFE, the choice of being a struct and
not an object is for performance reasons. Internally, the finite field element
is represented by an integer for performance reasons as well. For extension
fields Fpm , the following bijection to integers Fpm ↔ N is used:

a0 + a1x+ ...+ amx
m ⇔

m∑
i=0

aip
i

Both classes are written in order to take advantage of the structure of
the field for these sizes. For example, for fields whose size is a power of 2,
bitwise addition is performed directly whereas modular arithmetic is used
in prime fields. All operations are in O(1). In fields whose size is a power
of 2, primitive polynomials are hard-coded and enable to make fields of size
up to 216.

And now a few example. To construct a field:

FiniteField Fq = new PrimeField(101); // q = p = 101
FiniteField Fq = new BinaryExtensionField(8); // q = 2^8 = 1024

To get elements of a field:

FFE a = Fq[3];
FFE b = Fq[47];

To perform computations in fields:

FFE result = a * Fq[21] + b / Fq[33] + (Fq[2]^3402);
Console.WriteLine(result);

The reason the exponent has been put in parenthesis is that this operator
in C# initially stands for bitwise XOR and has no precedence over other
operators.

Remark: since FFE is a struct, it is created by default upon declara-
tion with all fields uninitialized. Doing so results in broken field elements.
myFiniteField[i] should always be used to get elements.

A prime extenstion field class can be implemented and seamlessly inte-
grated in the API provided it implements the FiniteField interface.

107

15.2 Polynomials

To be more precise, bivariate polynomials. Polynomials of different degrees
in x,y can be added, subtracted, multiplied and powers of them can be
taken. Except for polynomial powers, all other operations are efficiently
implemented. The next few code lines illustrates how polynomials can be
used.

// Let Fq = FFE.DEFAULT_FIELD
Polynomial p = new Polynomial(new int[,]{{0,3,0},{0,0,2}}); // result: p(x,y) = Fq[3]y + Fq[2] xy^2
Polynomial q = new Polynomial(4,3); // a polynomial whose max x-degree is 4 and max y-degree is 3
q[3,3] = Fq[5]; // result: q(x,y) = Fq[5]x^3y^3

Console.WriteLine((p*q - Fq[21]*p)^2);

Polynomial poly = Fq[1]; // implicit conversion
Polynomial x = Polynomial.GetX();

for(int i=0; i<Fq.q; i++)
poly = poly * (x - Fq[i]);

Console.WriteLine(poly); // prints x^q - x

Internally, polynomials store an array of FFE being the coefficients of the
powers of x and y.

15.3 Communication System

15.3.1 Interfaces

The communication system is represented by three key interfaces which are
utterly simple.

• Encoder: any encoder must implement this interface which consists of
the single method FFE[] Encode(FFE[] message).

• Channel: any channel must implement this interface which consists of
two methods:

– void Send(FFE[] word)

– double[,] Receive(): returns the reliability matrix for the last
sent word

108

• FFE[] Decode(double[,] RM): given the reliability matrix as input,
perform the decoding algorithm. For hard-decoding, the auxiliary
method FFE[] GetQuantizedReceivedWord(double[,] RM) can be
used.

By means of these interfaces, various components can be put together
to form the system. Moreover, it is easy to extend the current program
by adding different kind of channels, other decoders and so on. That way,
running simulation in a standardized way becomes easy:

FiniteField Fq = new MyFiniteField(...);

Encoder encoder = new MyEncoder(...);
Channel channel = new MyChannel(...);
Decoder decoder = new MyDecoder(...);

for (int i = 0; i < howManyTimes; i++)
{
FFE[] m = RandomMessage();
FFE[] x = encoder.Encode(m);
channel.Send(x);
double[,] RM = channel.Receive();
FFE[] hatx = decoder.Decode(RM);
}

15.3.2 Channels

Three channels are implemented:

• a noiseless channel outputting the same as is sent.

• a Qary symmetric channel with custom transition probabilities.

• a ”binary extension channel” explained next.

The last channel works only for the transmission of symbols from a
finite field whose size is 2m for some m. Each symbol is mapped onto bits,
transmitted an underlying binary symmetric channel of crossover probability
perr, then the received sequence of bits is mapped back to the symbol it
stands for. The probability that β was sent if γ is received depends on the
number of locations in which bits differ, noted be:

p(X = β|Y = γ) = pbeerr(1− perr)m−be

109

Example
Let m = 4 and perr = 0.1 and assume that 1100 is received. Then:

• 1100 has a probability of 0.94 of being the sent symbol.

• 1000, 0100, 111, 1101 have each a probability of 0.1 ∗ 0.93 of being the
sent symbol.

• ...

• 0011 has a probability of 0.14 of being the sent symbol.

15.3.3 Encoders and decoders

A Reed-Solomon encoder is implemented. It works for any finite field and
any valid parameters. The locations where the encoding polynomial is evalu-
ated can be specified or chosen by default. Two decoders were implemented:

• A bounded-distance hard-decoder performing the Gao algorithm pre-
sented in chapter 7 and decoding up to n−k

2 errors.

• The algebraic soft-decoder for Reed-Solomon codes described in this
thesis. It uses the greedy MAA with the number of total multiplicities
is given, the Kötter interpolation and the Roth-Ruckenstein factoriza-
tion.

In the first line of the source code of RSSoftDecoder.cs are preprocessor
directives included to indicate if the algorithm should execute in normal,
verbose or mute mode.

• In the verbose mode, every step is printed on the screen with every
temporary polynomial obtained during the interpolation and factor-
ization steps.

• In the normal mode, a dot is printed each time a constraint is satisfied
during the interpolation. Once interpolation has finished, the resulting
polynomial is printed. For factorization, a dot is printed for each root
found and upon termination the list of potential encoding polynomials
found are printed.

• In the mute mode, nothing at all is printed.

Code to run tests directly can be found in Benchmark.cs.

110

Chapter 16

Conclusion

In practice, the advantage of this algebraic soft decoding algorithm depends
on:

• the rate of the code

• the kind of channel

• the available computational power

Since the rate of a code is directly chosen depending on the magnitude
of the noise in the channel (for low noise, high code rates are used and vice-
versa), these two arguments in fact boil down to the same one. Both for
low rate codes and for very noisy channels, this algorithm offers tremendous
benefits. Unfortunately, neither of these situations are frequent in practice.
For example, optical fiber has crossover probabilities in the range of 10−12,
CD-Roms use RS codes with parameters k = 239 and n = 255, and so on.
For these higher rate codes and low noise channels, the benefits are lower and
more expensive (computationally) but nevertheless present. If the system
can afford these computational resources, this alternative should be taken
into account.

Another advantage for this algorithm is that it can easily be fined tuned
between performances in decoding ability and rapidity of execution. Indeed,
both are directly dependent on the number of interpolation points.

Despite it does not look very attractive for the moment at high rates,
some very promising improvements for this algorithm emerged during the
last few years. Here are some of them:

111

• There is the fact that it can be extended for soft-decoding algebraic
geometry codes which are superior to RS codes.

• In [10][11], four authors show the equivalence between the initial in-
terpolation problem and a transformed interpolation problem of lesser
complexity by means of a genuine change of variable. The transformed
interpolation problem has the property that a significant amount of
constraints can be pre-solved. This reduces the number of constraints
in the shifted interpolation problem by at least n

n−k .

• El-Khamy and McEliece showed a better optimization problem for
the assignment of the multiplicity matrix providing an MAA leading
to greatly improved error correcting ability [15].

• In [17], Guruswami and Rudra showed that by carefully selection the
locations at which the Reed-Solomon is evaluated, cyclic errors up
to the capacity can be corrected. He calls this folded Reed-Solomon
codes and takes advantage of relation between polynomials evaluated
at specified locations.

• Iterative algorithms to perform the interpolation while giving the in-
termediate results to be factored are being developed.

• Lastly, some papers go toward an implementation of this algorithm on
an electronic level with VLSI.

Combining these recent advances together, it would not be surprising to
have significantly increased decoding performances while having a significant
reduction in computational complexity. This would make this decoding
algorithm also attractive at high rates. It is surely only a matter of time
until they are applied in practice.

112

Bibliography

[1] The Theory of Error-Correcting Codes
- F.J. MacWilliams and N.J.A. Sloane
North-Holland, Amsterdam, 1977, 762 pp.

[2] Lecture notes
- J. Hall
http://www.mth.msu.edu/~jhall/classes/codenotes/coding-notes.html

[3] A new algorithm for decoding Reed-Solomon codes
- S. Gao
Communications, Information and Network Security (V. Bhargava, H.
V. Poor, V. Tarokh and S. Yoon, Eds.), Kluwer Academic Publishers,
2003, p. pp. 55–68
http://www.math.clemson.edu/faculty/Gao/papers/RS.pdf

[4] A Mathematical Theory of Communication
- C. Shannon
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July,
October, 1948

[5] Decoding of Reed-Solomon codes beyond the error-correction bound
- M. Sudan
Journal of Complexity, 13(1): 180–193, March 1997
http://people.csail.mit.edu/madhu/papers/reeds-journ.ps

[6] Improved decoding of Reed-Solomon and algebraic-geometry codes
- V. Guruswami, M. Sudan
IEEE Transactions on Information Theory, 45(6): 1757–1767, Septem-
ber 1999.
http://people.csail.mit.edu/madhu/papers/venkat-journ.ps

113

[7] Reflections on ”Improved decoding of Reed-Solomon and algebraic-
geometry codes”
- V. Guruswami, M. Sudan
IEEE Information Theory Society Newsletter, Volume 52, Number 1,
ISSN 1059-2362, pages 6-12, March 2002.
http://people.csail.mit.edu/madhu/papers/reflections.ps

[8] The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes.
- R. J. McEliece
The Interplanetary Network Progress Report, IPN PR 42-153, January-
March 2003, pp. 1-60
http://tmo.jpl.nasa.gov/progress report/42-153/153F.pdf

[9] Algebraic soft-decision decoding of Reed-Solomon codes
- R. Koetter, A. Vardy
IEEE Transactions on Information Theory, vol. 49, no. 11, November
2003
http://www.eecs.berkeley.edu/~dolecek/coding/KoetterVardy03.pdf

[10] Efficient interpolation and factorization in algebraic soft-decision de-
coding of Reed-Solomon codes
- R. Koetter, J. Ma, A. Vardy, and A. Ahmed

[11] A Complexity Reducing Transformation in Algebraic List Decoding of
Reed-Solomon Codes
- Ralf Koetter, Alexander Vardy

[12] Fast Generalized Minimum Distance Decoding of Algebraic-Geometry
and Reed-Solomon Codes
- R. Kötter
IEEE Transaction in Information Theory, vol. 42, no. 3, pp. 721-737,
May 1996

[13] Efficient Decoding of Reed-Solomon Codes beyond Half the Minimum
Distance
- R. Roth and G. Ruckenstein
Trans. Info. Theory, vol. 46, no. 1, pp. 246256, Jan. 2000

[14] Algebraic Soft-Decision Decoding of Reed-Solomon Codes Using Bit-
level Soft Information
- Jing Jiang and Krishna R. Narayanan

114

in Proc. Allerton Conference on Communications, Control and Com-
puting 2006 and submitted to IEEE Trans. on Information Theory.
http://www.ece.tamu.edu/~jjiang/bit gmd.pdf

[15] Interpolation Multiplicity Assignment Algorithms for Algebraic Soft-
Decision Decoding of Reed Solomon Codes
M. El-Khamy and R. J. McEliece
AMS-DIMACS volume on Algebraic Coding Theory and Information
Theory, vol. 68, 2005.
http://www.its.caltech.edu/~mostafa/pubs/DimacsElk8c.pdf

[16] Codes and Curves
- Judy L. Walker
expository monograph, published by the AMS in the IAS/Park City
Mathematical Subseries of the Student Mathematical Series.
http://www.math.unl.edu/~jwalker7/papers/rev.pdf

[17] Achieving List Decoding Capacity Using Folded Reed-Solomon Codes
- V. Guruswami and A. Rudra
Invited paper at Allerton 2006
http://www.cs.washington.edu/homes/venkat/pubs/papers/FRS-
allerton.pdf

[18] Iterative Algebraic Soft-Decision List Decoding of Reed-Solomon Codes
- M. El-Khamy. and R. J. McEliece
http://arxiv.org/PS cache/cs/pdf/0509/0509097v1.pdf

[19] aximum-Likelihood Decoding of Reed-Solomon Codes is NP-hard
V. Guruswami and A. Vardy
SODA 2005; accepted to IEEE Trans. Info. Theory
http://www.cs.washington.edu/homes/venkat/pubs/papers/mldrs.pdf

115

Part III

Appendix

116

Appendix A

Source code

A.1 Algebra

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
public abstract class FiniteField
{
public readonly int p;
public readonly int n;
public readonly int q;

public readonly FFE[] elements;

protected FiniteField(int p, int n)
{

this.p = p;
this.n = n;
this.q = (int) Math.Pow(p, n);
this.elements = new FFE[q];
for (int i = 0; i < q; i++)

elements[i] = new FFE(i);
FFE.DEFAULT_FIELD = this;

}

117

public abstract FFE Add(FFE a, FFE b);
public abstract FFE Substract(FFE a, FFE b);
public abstract FFE Multiply(FFE a, FFE b);
public abstract FFE Divide(FFE a, FFE b);
public abstract FFE Opposite(FFE a);
public abstract FFE Power(FFE a, int exp);

public FFE this[int value]
{

get
{

return this.elements[value];
}

}

public FFE this[int[] coefs]
{

get
{

return this[AsValue(coefs)];
}

}

public int[] AsCoefs(FFE a)
{

return AsCoefs(a.value);
}

public int[] AsCoefs(int value)
{

int[] coefs = new int[n];
int ppow = 1;
for (int i = 0; i < n; i++)
{

coefs[i] = (value % (p*ppow))/ppow;

118

ppow *= p;
}
return coefs;

}

public int AsValue(int[] coefs)
{

if (coefs.Length != n)
throw new ArgumentException("Wrong number of coefficients. Should be " + n + " instead of " + coefs.Length + ".");

int value = 0;
int ppow = 1;
for (int i = 0; i < n; i++)
{

value += coefs[i] * ppow;
ppow *= p;

}
return ((value % q) + q) % q;

}

}
}

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
public struct FFE
{
internal static FiniteField DEFAULT_FIELD;

internal readonly int value;

internal FFE(int value) {

119

this.value = value;
}

public override String ToString() {
if (DEFAULT_FIELD.n == 1)

return this.value.ToString();
else
{

String ans = "";
int[] coefs = DEFAULT_FIELD.AsCoefs(value);
for (int i = 0; i < coefs.Length; i++)

ans += coefs[i];
return ans;
/*
if (this.value == 0)

return "X";

for (int i = 0; i < DEFAULT_FIELD.q; i++)
{

int power = (DEFAULT_FIELD[2] ^ i).value;
if (this.value == power)

return i.ToString();
}

throw new Exception("Field element is not the power of the generator element.");
*/

}
}

public static FFE operator +(FFE a, FFE b) {
return DEFAULT_FIELD.Add(a, b);

}

public static FFE operator -(FFE a) {
return DEFAULT_FIELD.Opposite(a);

}

120

public static FFE operator -(FFE a, FFE b) {
return DEFAULT_FIELD.Substract(a, b);

}

public static FFE operator *(FFE a, FFE b) {
return DEFAULT_FIELD.Multiply(a, b);

}

public static FFE operator /(FFE a, FFE b) {
return DEFAULT_FIELD.Divide(a, b);

}

public static FFE operator ^(FFE a, int exp) {
return DEFAULT_FIELD.Power(a, exp);

}

public static bool operator ==(FFE a, FFE b) {
return a.value == b.value;

}

public static bool operator !=(FFE a, FFE b){
return a.value != b.value;

}

public static String VectorToString(FFE[] vector)
{

String ans = "";
for (int i = 0; i < vector.Length; i++)

ans += vector[i].ToString() + " ";
return ans;

}
}

}

using System;
using System.Collections.Generic;
using System.Text;

121

namespace SoftDecoding
{
class PrimeField : FiniteField
{
protected int[,] powersTable;
protected int[] inverses;

public PrimeField(int p) : base(p, 1)
{

powersTable = new int[p, p];
inverses = new int[p];

for (int i = 0; i < p; i++)
for (int j = 0; j < p; j++)

if (j == 0)
powersTable[i, j] = 1;

else
powersTable[i, j] = powersTable[i, j - 1] * i % p;

for (int i = 1; i < p; i++)
for (int j = 1; j < p; j++)

if ((i * j) % p == 1)
{

inverses[i] = j;
break;

}
}

public override FFE Add(FFE a, FFE b)
{

return new FFE((a.value + b.value) % p);
}

public override FFE Substract(FFE a, FFE b)
{

return new FFE((a.value - b.value + p) % p);
}

public override FFE Multiply(FFE a, FFE b)

122

{
return new FFE((a.value * b.value) % p);

}

public override FFE Divide(FFE a, FFE b)
{

if (b.value == 0)
throw new DivideByZeroException();

return new FFE((a.value * inverses[b.value]) % p);
}

public override FFE Opposite(FFE a)
{

return new FFE(p - a.value);
}

public override FFE Power(FFE a, int exp)
{

if (a.value == 0)
if (exp == 0)

return FFE.DEFAULT_FIELD[1];
else

return a;
else

return new FFE(powersTable[a.value, exp % (q-1)]);
}
}
}

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
class BinaryExtensionField : FiniteField
{

123

protected readonly int[] IRREDUCIBLE_POLYNOMIALS = new int[]{
0, //0
1, // = 2^1
3, // = 2^2
3, // = 2^3
3, // = 2^4
5, // = 2^5
3, // = 2^6
3, // = 2^7
29, // = 2^8
17, // = 2^9
9, // = 2^10
5, // = 2^11
83, // = 2^12
27, // = 2^13
1091, // = 2^14
3, // = 2^15
989 // = 2^16

};

//protected readonly int[,] productsTable;
//protected readonly int[] inverses;
//protected readonly int[,] powersTable;
protected readonly int[] logs;
protected readonly int[] powers;

public BinaryExtensionField(int n) : base(2,n)
{

/*
productsTable = new int[q,q];
inverses = new int[q];
powersTable = new int[q, q - 1];
*/
powers = new int[q-1]; //val = alpha^i => val = powers[i]
logs = new int[q]; //val = alpha^i => i = logs[val]
logs[0] = -1; // log(0) = -infinity

int val = 1;
for (int i = 0; i < q-1; i++)
{

124

while (val >= q)
val = (val % q) ^ (IRREDUCIBLE_POLYNOMIALS[n] * (val >> n));

powers[i] = val;
logs[val] = i;

val = 2 * val;
}

}

public override FFE Add(FFE a, FFE b)
{

return this.elements[a.value ^ b.value];
}

public override FFE Substract(FFE a, FFE b)
{

return this.elements[a.value ^ b.value];
}

public override FFE Multiply(FFE a, FFE b)
{

if (a.value == 0 | b.value == 0)
return this.elements[0];

else
return this.elements[powers[(logs[a.value] + logs[b.value])%(q-1)]];

}

public override FFE Divide(FFE a, FFE b)
{

if (b.value == 0)
throw new DivideByZeroException();

else if (a.value == 0)
return this.elements[0];

else
return this.elements[powers[

(q - 1 + logs[a.value] - logs[b.value]) % (q - 1)
]];

}

public override FFE Opposite(FFE a)

125

{
return a;

}

public override FFE Power(FFE a, int exp)
{

if (a.value == 0)
if (exp == 0)

return this.elements[1];
else

return this.elements[0];
else

return this.elements[powers[(logs[a.value]* exp) % (q - 1)]];
}
}
}

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
struct Polynomial
{
private FFE[,] values;

public FFE this[int i, int j]
{

get
{

if (i < values.GetLength(0) & j < values.GetLength(1))
return values[i, j];

else
return FFE.DEFAULT_FIELD[0];

}
set
{

126

if (i < values.GetLength(0) & j < values.GetLength(1))
values[i, j] = value;

else
{

FFE[,] old = values;
values = new FFE[Math.Max(i, old.GetLength(0)), Math.Max(j, old.GetLength(1))];
for (int ii = 0; ii < old.GetLength(0); ii++)

for (int jj = 0; jj < old.GetLength(1); jj++)
values[ii, jj] = old[ii, jj];

values[i, j] = value;
}

}
}

public Polynomial(int[,] values)
{

this.values = new FFE[values.GetLength(0), values.GetLength(1)];
for (int i = 0; i < values.GetLength(0); i++)

for (int j = 0; j < values.GetLength(1); j++)
this.values[i, j] = FFE.DEFAULT_FIELD[values[i,j]];

}

public Polynomial(FFE[,] values)
{

this.values = values;
}

public Polynomial(FFE[] values)
{

this.values = new FFE[values.Length, 1];
for (int i = 0; i < values.Length; i++)

this.values[i,0] = values[i];
}

public static Polynomial GetX()
{

return new Polynomial(new FFE[,] { { FFE.DEFAULT_FIELD[0] }, { FFE.DEFAULT_FIELD[1] } });
}

127

public static Polynomial GetY()
{

return new Polynomial(new FFE[,] { { FFE.DEFAULT_FIELD[0], FFE.DEFAULT_FIELD[1] } });
}

public int GetMaxDegX() {
return values.GetLength(0)-1;

}

public int GetDegreeX()
{

for (int i = this.GetMaxDegX(); i >= 0; i--)
for (int j = 0; j <= this.GetMaxDegY(); j++)

if (values[i, j] != FFE.DEFAULT_FIELD[0])
return i;

return 0;
}

public int GetMaxDegY(){
return values.GetLength(1)-1;

}

public Polynomial(int maxDegX, int maxDegY)
{

this.values = new FFE[maxDegX+1, maxDegY+1];
}

public static Polynomial operator +(Polynomial P, Polynomial Q)
{

Polynomial res = new Polynomial(
Math.Max(P.GetMaxDegX(), Q.GetMaxDegX()),
Math.Max(P.GetMaxDegY(), Q.GetMaxDegY()));

for (int i = 0; i <= res.GetMaxDegX(); i++)
for (int j = 0; j <= res.GetMaxDegY(); j++)

res[i, j] = P[i, j] + Q[i, j];

128

return res;
}

public static Polynomial operator -(Polynomial P, Polynomial Q)
{

Polynomial res = new Polynomial(
Math.Max(P.GetMaxDegX(), Q.GetMaxDegX()),
Math.Max(P.GetMaxDegY(), Q.GetMaxDegY()));

for (int i = 0; i <= res.GetMaxDegX(); i++)
for (int j = 0; j <= res.GetMaxDegY(); j++)

res[i, j] = P[i, j] - Q[i, j];

return res;
}

public static Polynomial operator *(Polynomial P, Polynomial Q)
{

Polynomial res = new Polynomial(P.GetDegreeX() + Q.GetDegreeX(), P.GetMaxDegY() + Q.GetMaxDegY());

for (int pi = 0; pi <= P.GetDegreeX(); pi++)
for (int pj = 0; pj <= P.GetMaxDegY(); pj++)

if(P[pi,pj] != FFE.DEFAULT_FIELD[0])
for (int qi = 0; qi <= Q.GetDegreeX(); qi++)

for (int qj = 0; qj <= Q.GetMaxDegY(); qj++)
res[pi+qi, pj+qj] += P[pi, pj] * Q[qi, qj];

return res;
}

public static Polynomial operator ^(Polynomial P, int exp)
{

if (P == GetX())
{

Polynomial res = new Polynomial(exp, 0);
res[exp,0] = FFE.DEFAULT_FIELD[1];

129

return res;
}
else if (P == GetY())
{

Polynomial res = new Polynomial(0, exp);
res[0, exp] = FFE.DEFAULT_FIELD[1];
return res;

}
else
{

Polynomial ans = FFE.DEFAULT_FIELD[1];
for (int i = 0; i < exp; i++)

ans *= P;
return ans;

}
}

// implicit conversion from an FFE to a polynomial
public static implicit operator Polynomial(FFE value) {

return new Polynomial(new FFE[,] { { value } });
}

public FFE Evaluate(FFE xVal, FFE yVal)
{

FFE res = FFE.DEFAULT_FIELD[0];
for (int i = 0; i <= GetMaxDegX(); i++)

for (int j = 0; j <= GetMaxDegY(); j++)
res += this.values[i,j]*(xVal^i)*(yVal^j);

return res;
}

public override string ToString()

130

{
String ans = "";
FFE zero = FFE.DEFAULT_FIELD[0];
for (int j = 0; j <= GetMaxDegY(); j++)

for (int i = 0; i <= GetMaxDegX(); i++)
if (this[i, j] != zero)

ans += this[i, j] + (i == 0 ? "" : "x^" + i) + (j == 0 ? "" : "y^" + j) + " + ";

if (ans.Length > 0)
return ans.Substring(0, ans.Length - 2);

else
return "0";

}

public static bool operator ==(Polynomial P, Polynomial Q)
{

return !(P != Q);
}

public static bool operator !=(Polynomial P, Polynomial Q)
{

int maxDegX = (int) Math.Max(P.GetMaxDegX(), Q.GetMaxDegX());
int maxDegY = (int) Math.Max(P.GetMaxDegY(), Q.GetMaxDegY());

for (int i = 0; i <= maxDegX; i++)
for (int j = 0; j <= maxDegY; j++)

if (P[i, j] != Q[i, j])
return true;

return false;
}
}

}

A.2 Communication system interfaces

using System;

131

using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
interface Encoder
{

FFE[] Encode(FFE[] message);
}
}

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
interface Channel
{

void Send(FFE[] word);
double[,] Receive(); // returns the reliability matrix

}
}

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
interface Decoder
{

FFE[] Decode(double[,] RM);
}
}

132

A.3 Reed-Solomon encoders/decoders

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
class RSEncoder : Encoder
{
public readonly int n;
public readonly int k;
public readonly FFE[] alphas;

internal RSEncoder(int k, FFE[] alphas)
{

this.n = alphas.Length;
this.k = k;
this.alphas = alphas;

}

public static FFE[] GetDefautLocation(FiniteField Fq, int n)
{

if (n > Fq.q)
throw new ArgumentException("More locations than field elements is not allowed. You must ensure n <= q.");

FFE[] alphas = new FFE[n];
if (n < Fq.q)

for (int i = 0; i < n; i++)
alphas[i] = Fq[i + 1];

else // n == q
for (int i = 0; i < n; i++)

alphas[i] = Fq[i];

return alphas;
}

public FFE[] Encode(FFE[] message)

133

{
Polynomial f = new Polynomial(message);
FFE[] x = new FFE[n];
for (int i = 0; i < n; i++)

x[i] = f.Evaluate(alphas[i], FFE.DEFAULT_FIELD[0]);
return x;

}
}
}

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
class GaoDecoder : Decoder
{
protected FiniteField Fq;
protected int k;
protected int n;
protected FFE[] alphas;

public GaoDecoder(FiniteField Fq, FFE[] alphas, int k)
{

this.Fq = Fq;
this.alphas = alphas;
this.n = alphas.Length;
this.k = k;

}

FFE[] Decoder.Decode(double[,] RM)
{

FFE[] y = new FFE[n];

for (int i = 0; i < n; i++)
{

int maxJ = 0;

134

double max = 0;
for (int j = 0; j < Fq.q; j++)
{

if (RM[i, j] > max)
{

max = RM[i, j];
maxJ = j;

}
}
y[i] = Fq[maxJ];

}
return this.Decode(y);

}

private FFE[] Decode(FFE[] y)
{

Polynomial[] p_i = new Polynomial[3];
Polynomial[] v_i = new Polynomial[3] { Fq[0], Fq[0], Fq[1] };

Polynomial x = Polynomial.GetX();

// p_1 = prod_j (x - alpha_j)
p_i[1] = Fq[1];
for (int i = 0; i < n; i++)

p_i[1] *= (x - alphas[i]);

// p_2 = sum y_i prod (x - alpha_j)/(alpha_i - alpha_j)
p_i[2] = Fq[0];
for (int i = 0; i < n; i++)
{

Polynomial fact = y[i];
for (int j = 0; j < n; j++)

if (j != i)
fact *= Fq[1]/(alphas[i] - alphas[j])*(x - alphas[j]);

p_i[2] += fact;
}

if (p_i[2].GetDegreeX() < k)
{

FFE[] hatx = new FFE[n];

135

for (int i = 0; i < n; i++)
hatx[i] = p_i[2].Evaluate(alphas[i], Fq[0]);

return hatx;
}

// the Euclidean division begins...
Polynomial[] QR;
do
{

p_i[0] = p_i[1];
p_i[1] = p_i[2];

v_i[0] = v_i[1];
v_i[1] = v_i[2];

QR = GetQuotientRemainder(p_i[0], p_i[1]);

p_i[2] = QR[1];
v_i[2] = -Fq[1] * QR[0] * v_i[1] + v_i[0];

}
while(2 * p_i[2].GetDegreeX() >= n+k);

//p_i[2] = f * v[2] + r
QR = GetQuotientRemainder(p_i[2], v_i[2]);
if (QR[1] == Fq[0])
{

// Success
FFE[] hatx = new FFE[n];
for (int i = 0; i < n; i++)

hatx[i] = QR[0].Evaluate(alphas[i], Fq[0]);
return hatx;

}
else
{

// Failure
return new FFE[n];

}
}

136

private Polynomial[] GetQuotientRemainder(Polynomial dividend, Polynomial divisor)
{

if (divisor == Fq[0])
throw new DivideByZeroException();

if(dividend.GetDegreeX() < divisor.GetDegreeX())
throw new ArgumentException("The degree of the dividend cannot be less than the degree of the divisor.");

Polynomial remainder = Fq[1] * dividend; // to make a "by value copy" of the dividend
Polynomial quotient = new Polynomial(0,0);
Polynomial x = Polynomial.GetX();

int degDiv = divisor.GetDegreeX();
FFE leadingCoeficient = divisor[degDiv,0];

for (int deg = dividend.GetDegreeX(); deg >= degDiv; deg--)
{

FFE coef = remainder[deg, 0] / leadingCoeficient;
quotient += coef * (x ^ (deg - degDiv));
remainder -= coef * divisor * (x ^ (deg - degDiv));

}

return new Polynomial[] { quotient, remainder };
}
}
}

//#define VERBOSE
#define MUTE

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
class RSSoftDecoder : Decoder

137

{
int k;
int n;
FFE[] alphas;
FiniteField Fq = FFE.DEFAULT_FIELD;

private int nbMultiplicities;

public RSSoftDecoder(int k, FFE[] alphas, int nbMultiplicities)
{

if (alphas == null)
throw new ArgumentNullException("’alphas’ cannot be null.");

if (!(0 < k & k < alphas.Length & alphas.Length <= Fq.q))
throw new ArgumentException("Arguments ’k’ and ’n’ do not satisfy: 0 < k < n <= q, where ’q’ is the size of the field.");

for (int i = 0; i < n; i++)
for (int j = i+1; j < n; j++)

if(alphas[i] == alphas[j])
throw new ArgumentException("Evaluating locations must all be distinct");

this.k = k;
this.n = alphas.Length;
this.alphas = alphas;
this.nbMultiplicities = nbMultiplicities;

}

public FFE[] Decode(double[,] RM)
{

if (RM == null)
throw new ArgumentNullException("RM cannot be null");

if (RM.GetLength(0) != n | RM.GetLength(1) != Fq.q)
throw new ArgumentException("RM matrix should have size n x q (" + n + " x " + Fq.q + ").");

138

int[,] M = GreedyMAA(RM);

int omega = ComputeOmega(Cost(M));
List<Polynomial> polyList = ListDecode(M, omega);

if (polyList.Count == 0)
{

//throw new Exception("Decoding failed");
return new FFE[n];

}

double maxProba = 0;
Polynomial best = polyList[0];

foreach (Polynomial poly in polyList)
{

double proba = 1;
for (int i = 0; i < n; i++)

for (int j = 0; j < Fq.q; j++)
if (poly.Evaluate(alphas[i], Fq[0]) == Fq[j])

proba *= RM[i, j];

if (proba > maxProba)
{

maxProba = proba;
best = poly;

}
}

#if !MUTE
Console.WriteLine("\n--== RESULT ==--\n" + best);

#endif
FFE[] x = new FFE[n];
for (int i = 0; i < n; i++)

x[i] = best.Evaluate(alphas[i], Fq[0]);

return x;
}

public int[,] GreedyMAA(double[,] RM)
{

139

int[,] M = new int[n, Fq.q];

for (int m = 0; m < nbMultiplicities; m++)
{

double heighest = 0;
int hi = 0;
int hj = 0;
for (int i = 0; i < n; i++)

for (int j = 0; j < Fq.q; j++)
if (RM[i, j]/(M[i,j] + 1) > heighest)
{

heighest = RM[i, j]/(M[i,j] + 1);
hi = i;
hj = j;

}
M[hi, hj]++;

}
return M;

}

/*
public FFE[] Decode(FFE[] y)
{

if (y == null)
throw new ArgumentNullException("’y’ cannot be null");

int[,] M = new int[n, Fq.q];
for (int i = 0; i < n; i++)

for (int j = 0; j < Fq.q; j++)
if(y[i] == Fq[j])

M[i, j] = nbMultiplicities / n; //nbMultiplicities must be a multiple of n!!!

int omega = ComputeOmega(n * nbMultiplicities * (nbMultiplicities + 1) / 2);
List<Polynomial> polyList = ListDecode(M, omega);

Polynomial best = polyList[0];
int maxAgree = 0;

foreach (Polynomial poly in polyList)

140

{
int agree = 0;
for (int i = 0; i < n; i++)

if (poly.Evaluate(alphas[i], Fq[0]) == y[i])
agree++;

if (agree > maxAgree)
{

maxAgree = agree;
best = poly;

}
}

#if !MUTE
Console.WriteLine("\n--== RESULT ==--\n" + best);

#endif
FFE[] x = new FFE[n];
for (int i = 0; i < n; i++)

x[i] = best.Evaluate(alphas[i], Fq[0]);

return x;
}
*/

public List<Polynomial> ListDecode(int[,] M, int omega)
{

Polynomial Q = FindQ(M, omega);
#if !MUTE

Console.WriteLine("\n--== Interpolation finished ==--\n" + Q+"\n");
#endif

List<Polynomial> polyList = new List<Polynomial>();
FactorizeRR(Q, 0, new Polynomial(0,0), polyList);

#if !MUTE
Console.WriteLine("\n--== Factorization finished ==--");
foreach (Polynomial poly in polyList)

Console.WriteLine(poly);
#endif

return polyList;
}

141

public static long C(int j, int n)
{

long ans = 1;

if (j > n / 2)
j = n-j;

for (int i = 0; i < j; i++)
ans *= (n - i);

ans /= Fact(j);

return ans;
}

static int Fact(int n)
{

if (n <= 1)
return 1;

else
return n * Fact(n - 1);

}

// divides by the greatest power of X possible and shrink the array as much as possible
Polynomial NormalizeX(Polynomial Q)
{

int xPowerDivisor = -1;

for (int i = 0; i <= Q.GetMaxDegX() & xPowerDivisor == -1; i++)
for (int j = 0; j <= Q.GetMaxDegY(); j++)

if (Q[i, j] != Fq[0])
{

xPowerDivisor = i;
break;

}

if (xPowerDivisor == -1) {
return new Polynomial(0,0);

}

142

int xDegreesInExcess = -1;
for (int i = Q.GetMaxDegX(); i > 0 & xDegreesInExcess == -1; i--)

for (int j = 0; j <= Q.GetMaxDegY(); j++)
if (Q[i, j] != Fq[0])
{

xDegreesInExcess = Q.GetMaxDegX() - i;
break;

}

if (xPowerDivisor > 0 | xDegreesInExcess > 0)
{

Polynomial divided = new Polynomial(Q.GetMaxDegX() - xPowerDivisor - xDegreesInExcess, Q.GetMaxDegY());
for (int i = 0; i <= divided.GetMaxDegX(); i++)

for (int j = 0; j <= divided.GetMaxDegY(); j++)
divided[i, j] = Q[i + xPowerDivisor, j];

return divided;
}
else

return Q;
}

public Polynomial Y_To_XY_Plus_Gamma(Polynomial Q, FFE gamma)
{

Polynomial result = new Polynomial(Q.GetMaxDegX() + Q.GetMaxDegY(), Q.GetMaxDegY());

for (int i = 0; i <= Q.GetMaxDegX(); i++)
for (int j = 0; j <= Q.GetMaxDegY(); j++)

for (int d = 0; d <= j; d++)
result[i + d, d] += Fq[(int) C(d, j) % Fq.p] * Q[i, j] * (gamma ^ (j - d));

return result;
}

Polynomial HasseDerivative(Polynomial Q, int dx, int dy)
{

143

if (dx == 0 & dy == 0)
return Q;

Polynomial DQ = new Polynomial(Math.Max(Q.GetMaxDegX() - dx,0), Math.Max(Q.GetMaxDegY() - dy,0));
for (int i = 0; i <= Q.GetMaxDegX() - dx; i++)

for (int j = 0; j <= Q.GetMaxDegY() - dy; j++)
{

int ii = i + dx;
int jj = j + dy;
long ci = C(dx, ii);
long cj = C(dy, jj);
DQ[i, j] = Fq[(int) (C(dx,ii) % Fq.p)] * Fq[(int) (C(dy,jj) % Fq.p)] * Q[ii, jj];

}
return DQ;

}

public int Cost(int[,] M)
{

int cost = 0;

for (int i = 0; i < M.GetLength(0); i++)
for (int j = 0; j < M.GetLength(1); j++)

cost += M[i, j] * (M[i, j] + 1) / 2;

return cost;
}

public int ComputeOmega(int cost)
{

// this is a lower bound on Omega(cost)
int omega = (int) Math.Sqrt(2 * (k - 1) * cost) - 1;
int L = omega / (k - 1);

// now, we find the least Omega such that NbMonoms(Omega) > cost
int nbMonoms = (L + 1) * (omega+1 - L * (k - 1) / 2);

144

while (nbMonoms <= cost)
{

omega++;
L = omega / (k - 1);
nbMonoms = (L + 1) * (omega+1 - L * (k - 1) / 2);

}
return omega;

}

public Polynomial FindQ(int[,] M, int omega)
{

int L = omega / (k - 1);

Polynomial[] Q = new Polynomial[L + 1];
int[] wdeg = new int[L + 1];
for (int l = 0; l <= L; l++)
{

Q[l] = new Polynomial(omega, L);
Q[l][0, l] = Fq[1];
wdeg[l] = l * (k - 1);

}

FFE[] lambdas = new FFE[L + 1];
int lowestL;

for (int i = 0; i < alphas.Length; i++)
for (int j = 0; j < Fq.q; j++)
if (M[i, j] != 0)
{

#if VERBOSE
Console.WriteLine("i,j: " + alphas[i] + "," + Fq[j]);

#endif

for (int u = 0; u < M[i, j]; u++)
for (int v = 0; v < M[i, j] - u; v++)
{

#if !MUTE

145

#if !VERBOSE
Console.Write(".");

#endif
#endif

lowestL = -1;
for (int l = 0; l <= L; l++)
{

Polynomial Duv = HasseDerivative(Q[l], u, v);
lambdas[l] = Duv.Evaluate(alphas[i], Fq[j]);

#if VERBOSE
Console.WriteLine("Q["+l+"](x,y) = " +Q[l] + "\n => D_" + u + "," + v + " = " + Duv + "\n => lambda (" + alphas[i] + "," + Fq[j] + ") = " + lambdas[l]);

#endif
if (lambdas[l] != Fq[0])

if (lowestL == -1 || wdeg[l] < wdeg[lowestL])
lowestL = l;

}
#if VERBOSE

Console.WriteLine("\n" + "Lowest l is: " + lowestL + "\n");
#endif

if (lowestL != -1)
{

for (int l = 0; l <= L; l++)
if (lambdas[l] != Fq[0] & l != lowestL)

Q[l] = Q[l] - (lambdas[l]/lambdas[lowestL]) * Q[lowestL];

Q[lowestL] = (Polynomial.GetX() - alphas[i]) * Q[lowestL];
wdeg[lowestL] += 1;

}
}

}

return Q[ArgMin(wdeg)];
}

static int ArgMin(int[] array)
{

int argMin = -1;

146

for (int i = 0; i < array.Length; i++)
if (argMin == -1 || array[i] < array[argMin])

argMin = i;

return argMin;
}

public void FactorizeRR(Polynomial Q, int i, Polynomial f, List<Polynomial> fList)
{

Q = NormalizeX(Q);

#if VERBOSE
Console.WriteLine("i: " + i + " - k: " + k);

#elif !MUTE
Console.Write(".");

#endif

for (int j = 0; j < Fq.q; j++)
{

FFE eval = Q.Evaluate(Fq[0], Fq[j]);
if(eval == Fq[0])

{
#if VERBOSE

Console.WriteLine(Q);
Console.WriteLine("Q(0," + Fq[j] + ") = " + Q.Evaluate(Fq[0], Fq[j]));

#endif
Polynomial otherF = f + Fq[j] * (Polynomial.GetX()^i);

if (i == k - 1)
fList.Add(otherF);

else
{

Polynomial nextQ = Y_To_XY_Plus_Gamma(Q, Fq[j]);
FactorizeRR(nextQ, i + 1, otherF, fList);

}
}

}
}

147

}
}

A.4 Channels

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
public class NoiselessChannel : Channel
{
protected FiniteField Fq;

public NoiselessChannel(FiniteField Fq)
{

this.Fq = Fq;
}

FFE[] received;

public void Send(FFE[] word)
{

received = word;
}

public double[,] Receive()
{

int n = received.Length;
double[,] RM = new double[n, Fq.q];
for (int i = 0; i < n; i++)

for (int j = 0; j < Fq.q; j++)
if (received[i] == Fq[j])

RM[i, j] = 1.0;
return RM;

}

148

public void SetVariance(double variance)
{

//nothing to do
}
}
}

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
class QarySymetricChannel : Channel
{
public readonly FiniteField Fq;
public readonly double p_err;

private Random random = new Random();

private FFE[] received;
private double[,] RM;

public QarySymetricChannel(FiniteField Fq, double p_err)
{

this.Fq = Fq;
this.p_err = p_err;

}

public void Send(FFE[] word)
{

int n = word.Length;
received = new FFE[n];
for (int i = 0; i < word.Length; i++)

if (random.NextDouble() > p_err)
received[i] = word[i];

else

149

do
received[i] = Fq[random.Next(Fq.q)];

while (received[i] == word[i]);

RM = new double[word.Length, Fq.q];
for (int i = 0; i < n; i++)

for (int j = 0; j < Fq.q; j++)
if (received[i] == Fq[j])

RM[i, j] = 1.0 - p_err;
else

RM[i, j] = p_err / (Fq.q - 1);
}

public double[,] Receive()
{

return RM;
}

}
}

using System;
using System.Collections.Generic;
using System.Text;

namespace SoftDecoding
{
class ExtendedBinaryChannel : Channel
{
FiniteField Fq;
double p_err;

double[,] RM;
FFE[] received;

private Random random = new Random();
private int m;

150

public ExtendedBinaryChannel(FiniteField Fq, double p_err)
{

if(Fq.p != 2)
throw new Exception("This channel is only valid for symbols belonging to binary power fields.");

this.Fq = Fq;
this.p_err = p_err;
this.m = Fq.n;

}

private int Dist(FFE a, FFE b)
{

int ans = 0;
int[] coefsA = Fq.AsCoefs(a);
int[] coefsB = Fq.AsCoefs(b);
for (int i = 0; i < m; i++)

if(coefsA[i] != coefsB[i])
ans++;

return ans;
}

public void Send(FFE[] word)
{

int n = word.Length;
int[] noise = new int[m];

received = new FFE[n];
for (int i = 0; i < word.Length; i++)
{

for (int j = 0; j < m; j++)
if (random.NextDouble() > p_err)

noise[j] = 0;
else

noise[j] = 1;

received[i] = word[i] + Fq[noise];
}

151

RM = new double[n, Fq.q];
for (int i = 0; i < n; i++)

for (int j = 0; j < Fq.q; j++)
{

int dist = Dist(received[i], Fq[j]);
RM[i, j] = Math.Pow(p_err, dist) * Math.Pow(1.0 - p_err, m-dist);

}
}

public double[,] Receive()
{

return RM;
}

}
}

152

	I Prerequisites
	Introduction
	Overview
	Introductory example

	Basics of communication
	Communication system
	In more details...
	Channel encoder
	Channels and demodulators
	Binary Gaussian channel ...and friends
	Qary symmetric channel
	Binary erasure channel

	Channel decoder

	Coding theory introduction
	What are codes?
	Nearest neighbor decoding
	Space and spheres

	Mathematics fundamentals
	Groups
	Rings
	Fields

	Linear codes
	Definition
	Hard decoding using the syndrome

	More on fields
	Field properties
	The extended Euclidean algorithm

	Reed-Solomon codes
	Not so classical decoding
	The key equation
	Conclusion

	II Soft decoding
	Introduction
	What do we achieve here?
	History and results
	General outline

	The Sudan algorithm
	Introduction
	Decoding problem reformulation
	Weighted degree
	Overview
	Constraints for Q
	Monomial enumeration
	Roots vs degree of Q
	Example
	Performances

	Zeros, roots and constraints
	Zeros of higher multiplicity
	Expressing the constraints

	The core theorem
	Multiplicity Matrix
	Algorithm and example

	Multiplicity assignment
	The reliability matrix
	Setting the problem
	Greedy MAA
	Proportional MAA
	Asymptotic hard-decoding performances
	Asymptotic soft-decoding performances

	Kötter's interpolation
	Monomial ordering
	Kernels of constraints
	The algorithm
	Performances
	Pseudo-code

	Factorization
	Roth-Ruckenstein factorization
	Pseudo-code

	Program notes
	Algebra
	Finite fields

	Polynomials
	Communication System
	Interfaces
	Channels
	Encoders and decoders

	Conclusion

	III Appendix
	Source code
	Algebra
	Communication system interfaces
	Reed-Solomon encoders/decoders
	Channels

